

The FASER experiment and detector performance from the first data

Ke Li on behalf of FASER collaborations 03/10/2023

La Thuile 2023

ForwArd Search ExpeRiment

- > Faser is designed to search for long lived particles (LLP) and neutrinos produced in pp collision in ATLAS IP:
 - The LLP is produced in the decay of SM meson which are predominantly produced very collimated with the beam direction
 - Even small detectors on (or close to) the LOS can have good sensitivity in these scenarios
 - > e.g. 1% of pions with E > 10 GeV are produced in the forward 0.000001% of the solid angle (η > 9.2)
 - 480m from ATLAS IP in the forward regions
 - 100m rock to shield most of the background

FASER detector

3 Tracker stations:

EM Calorimeter:

- 66 scintillator + lead planes
- ~25 *X*0

- Each has 3 layer of 8 silicon strip modules
- Measure track trajectory
- More details in <u>NIMA166825(2022)</u>

Scintillator

 Veto charged particles

ATLAS IP

Scintillator:

Trigger/preshower

Decay volume:

Interface tracker:

3 layers of 8 silicon strip modules (SCT)

Trigger/timing

Scintillator station:

More details in <u>INST16,P12028 (2021)</u>

• 770 emulsion + tungsten plate

- 770 emulsion + tungsten plat
- ~8λ

FASERv:

Measure track trajectory, neutrino flavor

Long-lived particles

- > Searches for new weakly interacting light particles, coupling to SM in forward region $pp \to \text{LLP} + X$, $\text{LLP travels} \sim 480 \text{ m}$, $\text{LLP} \to e^+e^-, \mu^+\mu^-, \pi^+\pi^-, \gamma\gamma, \ldots$,
 - Produced in decays of light mesons (e.g. π^0 , K)

Light SM particles abundantly present in pp collisions, primarily in large pseudorapidity

- Dark photon, axion-like particle (ALP) ...
- By being on the LOS maximises the acceptance for potential signals
- In Run-3 of the LHC we expect $O(10^{14}) \pi^0$ to be produced in the FASER acceptance.

FASER operations

- > FASER successfully collected ~40/fb of 13.6 TeV collision data in 2022 running (July -Dec)
- > Average trigger rate: ~700Hz
- > Detector operations went very smoothly

First collision data

Run 8336 Event 1477982 2022-08-23 01:46:15 Event display of a muon traversing the full detector, all parts of the detector performing as expected.

To ATLAS IP

Detector performance - tracker

- > Build of same silicon strip module (SCT) as ATLAS, module fine time tuned with 390 ps precision
- > Hit efficiency of 99.64±0.10% at threshold of 1.0 fC and sensor bias 150V

- > Total number of dead/noisy strips < 0.5%
- > Inefficiency from module edges are expected

Detector performance - alignment

- > Iterative local chi2 alignment
- > Validated with MC simulation
- > Only consider 2 of 6 degree of freedoms, Y translation and Z rotation
 - Silicon strip detector, precision on Y is much better than X
 - Track parameters and residuals are improved significantly
 - Remaining discrepancy will be taken as systematic uncertainty

Detector performance - scintillator/calorimeter

- > Veto scintillator efficiency from data:
 - >99.99% for each veto scintillator
 - Veto O(10¹⁰) muons by combining 5 scintillators
- > Calorimeter energy resolution measured with electrons in test beam
 - Resolution at O(1%) at high energy as expected
- > Timing resolution ~250ps
 - Reject the beam-1 background efficiently

Dark photon

- > Even with 1/fb of data FASER will have sensitivity to unconstrained parameter space
- > Production:
 - mainly from decays of light mesons, π , η and dark bremsstrahlung.
- > Decays:two charged particles
 - $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$

Expected sensitivity assuming no background

Axion-like particles (ALPs)

Expected sensitivity assuming no background

In the case of ALPs only couple to photons

$$\mathcal{L} \supset -\frac{1}{2} \frac{m_a^2}{a} a^2 - \frac{1}{4} \frac{g_{a\gamma\gamma}}{a} a F^{\mu\nu} \widetilde{F}_{\mu\nu} ,$$

> Mainly produced via Primakoff process $(\gamma N \rightarrow aN)$ In forward region of pp collision

More details in PRD.99.095011 (2019)

Pre-shower upgrade

- Current pre-shower unable to separate closely spaced high energy photons(e.g. from ALP decay)
- Upgrade to enable detecting ALPs→ γγ searches
 - Able to reconstruct 2 high energy photons separately by ~200μm
- New pre-shower: high-resolution silicon pre-shower detector using monolithic pixel ASICs
 - hexagonal pixels of 65µm side
 - Planned to be ready for 2024 data taking

Charge distribution [fC]

Neutrinos from LHC

- A huge number of neutrinos produced in the LHC collisions traverse the FASER location covering an unexplored neutrino energy regime
 - Originate from hadron decays, mainly pion, kaon and charm mesons
- FASERv is an emulsion/tungsten detector placed in front of the main FASER detector to detect all flavor of neutrino interactions

Generators		$\mathrm{FASER} u$		
light hadrons	heavy hadrons	$ u_e + \bar{\nu}_e $	$\nu_{\mu} + \bar{\nu}_{\mu}$	$ u_{ au} + \bar{ u}_{ au} $
SIBYLL	SIBYLL	901	4783	14.7
DPMJET	DPMJET	3457	7088	97
EPOSLHC	Pythia8 (Hard)	1513	5905	34.2
QGSJET	Pythia8 (Soft)	970	5351	16.1
Combination (all)		1710^{+1746}_{-809}	5782^{+1306}_{-998}	$40.5^{+56.6}_{-25.8}$
Combination (w/o DPMJET)		1128^{+385}_{-227}	5346^{+558}_{-563}	$21.6^{+12.5}_{-6.9}$

Neutrino reconstruction efficiency: >80% with a energy resolution ~30%

- 730 x 1.1mm thick tungsten plates, interleaved with emulsion films
- 1m long, 1.1 ton detector
- Capable to distinguish all flavours of neutrino
- Emulsion films has excellent position/angular resolution but no time information
- Need to be replaced every ~3 months

FASERv pilot run

- A small emulsion detector (10kg target mass) to validate simulation of background particle flux
- > 12.2/fb data collected in ~1 month
- > 18 neutral vertices detected
- > Main background from muon induced neutral hadron
- > Best fit on BDT score shows 6.1 neutrino candidates (3.3 expected) with a significance of 2.7σ

Detector performance - FASERv

- > 3 emulsion detectors installed in 2022 running
 - First emulsion detector collected 0.5/fb collision data and used for commissioning and validation of data acquisition and processing

> Measured track multiplicity 2.3×10⁴ cm²/fb⁻¹ consist with FLUKA simulation and

in-situ measurement in 2018

> Very good spatial resolution (0.2um)

Across all modules collected 40/fb data

FASERv preliminary (2022 first module)	
500	
500 μm	

		Integrated luminosity (/fb)	# neutrino interaction expected
2022 1st module	Mar 15 - Jul 26	0.5	~7
2022 2nd module	Jul 26 - Sep 13	10.6	~530
2022 3rd module	Sep 13 - Nov 29	~30	~1000

16

FPF and FASER2

- > FASER2 for HL-LHC
 - Radius increased to 1m (FASER is 10cm)
 - Acceptance (π^0) increased to 10% (FASER is 0.6%)
- The FPF is proposal to create a new facility to house a suite of experiments on LOS
 - FASER2
 - FASERnu2
 - AdvSND
 - FLArE
 - FORMOSA

 $O(10^5)v_e$, $O(10^6)v_\mu$, $O(10^3)v_\tau$ expected in O(10 tons) detector)

J. Phys. G: Nucl. Part. Phys. 50 030501

 $40\text{cm}\times40\text{cm}\times8\text{m}$, 20 tons

Summary and outlook

- > FASER is well constructed and started to collect collision data at July 2022
 - Detector operated well in 2022 running, and collected >40/fb data
 - Will increase the sensitivity for light weakly interacting new particles at the LHC, complementing the other LHC experiments
 - Will make first collider neutrino measurements
- > Aiming to have first results in few weeks
- > Strong physics case emerging for large upgraded FASER2 detectors beyond Run 3, to be housed in the proposed <u>Forward Physics Facility (FPF)</u>

back-up

FASER detector

- > A veto scintillator to veto charged particles
- > A 1.5-meter magnetized decay volume
- > A 2-meter magnetic spectrometer with three tracking stations
- > An electromagnetic calorimeter
- > Three scintillator stations for triggering, veto and precise timing

Key features for BSM search

- Trigger rate O(700 Hz) dominated by muons
- > Muon flux is 1 Hz/cm 2 for L=2×10 34 cm $^{-2}$ s $^{-1}$
 - Confirmed by in situ measurements in 2018.
- Tracking detector strip pitch 80 µm with 40 mrad stereo angle
 - ~ 20 μm resolution in precision coordinate
 - ~ 550 μm in the other coordinate
- > Good separation for two collimated tracks
- > EM shower energy resolution: ~1% for TeV deposits

Detector performance - alignment

Mean and std of the residuals for each module

