The quest for LFV

through Ov2[3 decays in
Germanium:

Large Enriched

Germanium Experiment
for Neutrinoless B3 Decay

Photo: M. Willers / LEGEND Collaboration }




—

CEGEINUL

Large Enriched
Germanium Experiment
for Neutrinoless BB Deca

e Stems from previous achievements with Germanium and puts together their best in terms of
technology and know-how

* Two-staged approach with a “'stepping stone” of ~200 kg (Legend-200) towards the full-fledged
experiment with one-ton scale (Legend-1000)

* What's to “demonstrate’! Development of large Point-contact detectors, layout can be scaled up, bkg
reduction can be taken even farther aggressively

- Collaboraﬂon Meetmg, GSSI Oct 2022



How far can we go!
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* Value of T, for which a 76Ge-enriched experiment has a 50% chance to observe a signal above
background with 30 significance
* [ess than one background count expected in a 40 Region of Interest (ROI) with 10ty exposure



LEGEND-200 site: LNGS
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Gran Sasso
Laboratory

e [ -200 uses GERDA infrastructure
at LNGS

e Ge detectors “dipped” in LAr in
pre-existing cryostat

* Mountain provides screening
against cosmic rays

* Expected external bkg sources:

¢ Yy from U/Th decays,

€ neutrons,

€ remaining cosmic rays
(prompt and delayed)

* |ntrinsic:

¢ radioactive surface
contamination,

€ 39Ar decays,

€ cosmogenic activation of
Isotopes
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high-purity germanium (HPGe) detectors enriched in 76Ge to (86—88)%: source + detector
detectors mounted on low-mass holders (to minimize radioactive bkg)

embedded in liquid argon (LAr): cryogenic coolant and detector against external radiation
ultrapure water tank: buffer around cryostat as additional absorber + Cherenkov veto




A heart of (High Purity) Germanium

Speed [cm/us]

with paths and isochrones
General concept w

* p-type diodes with point-contact
* Charge collection at p* electrode (Boron-implanted),
polarization potential applied to n* electrode (diffused Li)

R. Cooper et al., NIM A665,

|CPC 25 (2011)]

e ~60% of |.-200 detectors are of this type

e larger mass (1.5-2.0 kg, up to <2.5> kg for L-1000)

* but retaining similar charge drift times across volume
(important for Pulse Shape Discrimination, see later) o NN
e Reduced surface-to-volume ratio (a and 3): less dirty Radial position [mm]
cables, pre-amps

e | ower cost per kg, higher efficiency

Axial position [mm]

well —

n* contact

Bulk (p-type) -

groove \

p+ contact




Z [mm)])

Origin of radioactive bkgs

® d mainly from 2/0Po (T=138 days) coming from 238U chain on diode surface and
attracted to migrate towards p* electrode by its strong field

® Vycomes from

® various branches of U and Th chain on materials (FETs, cables, Cu mounts, plastics);

® and from AAZAr — 402K = 4042C3" decays (K 1on drifted by LAr convective
motion and electric field lines towards n* dead layer = SSE)

® [3 mainly from 4942K " decays close to diodes, same as above

Ov[3P3 signal candidate (single-site) v-background (multi-site)
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-xpected bkg budget [-200
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~ 2-3 times lower Bl than GERDA
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| Ar active detector

® Retain a crucial element of GERDA: instrument
LAr volume to read out light from scintillation

® ) shrouds of optical fibers for enhanced coverage
coated in TBP as WLS + SIPM with new FE
electronics

® Reflective foil around outer shroud to increase
light collection

® \Veto radiogenic backgrounds but can also
measure energies and identify processes (see
later)

® Self-vetoeing from:

® radioactivity from fibers

® high-activity [3 decays of sub-dominant isotope
39AF [1.41 Ball (e.g. NIMA 574 83)]




Benefit of active veto (lesson from GERDA)
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Eur. Phys. J. C (2018) 78: 388

* Ov2[3 decay signal efficiency: eiar = (98.2 + 0.1)% after upgrade
* Accidental coincidences give |.8% dead time after upgrade
*Factor 6 bkg reduction in the ROI (1930 keV to 2190 keV) on top of PSD




Current status...

S T—— -t

™| 40 kg taking data since June

* Taking regular physics and calibration
data with various trigger streams

* Reach 200 kg by the end of the year

* Goal (5 yr runtime):
* Discovery sensitivity T1/2 > 102/
yr (99.7% C.L)

*m(PBPR) <33—-71 meV

%

e commissioning and performance
evaluation



Initial commissioning performance
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Preliminary SIPM perfo in 60 kg runs
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[-200 = L-1000
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e Largest reductions are on
42|<’ Q, U

*+ “trimming’ here and
there on radio-purity of
materials, esp. cables

* Need specialised work to
stop cosmogenic bkg, esp. If
at LNGS

~ 50 times lower Bl than GERDA

et




- 1000 preliminary design
¢

*  String concept replicated in 4 payloads,
in total ~400 detectors

*  Dedicated Underground Ar cryostat,
~3m3 in volume

*  Modest-sized LAr cryostat in “water
tank” (6 m & LAr, 2-2.5 m layer of
water) or large LAr cryostat w/o water
(9 m )

|
| LN

e  Other options still remain under
investigation in order to achieve max
bkg reduction (esp. cosmogenic)

Site yet TBD (LNGS? SNO?): both offer some advantages and some limrtations
Staged data-taking in payloads (2025-2030?) as detector production progresses

R&D on-going on several crucial improvements: larger ICPC, electronics, neutron
veto, use of UG Ar, radio-cleaner fibers



2 examples of remedies against bkg

® UGEFCu used in L200 b/c of its high radio-purity

(£ 0.1 UBag/kg Th/U chains, very low in cosmogenic
60Co)

® Advancements in the understanding of post

machining contamination of plastics and metals for
L-1000

Low (5-7 g) mass geometry
optimized for L-200

PEN — Poly(ethylene 2,6-
naphthalate) is a scintillating plastic
(1/3 LY of conventional plastic
scintillators)

Meets radio-purity req. £ | uBa/
piece for Ra/Th, it's self-vetoing




(Approx) timeline

GERDA/
MID

Purchase/enrich
Ge
Fabricate detectors

Install and commission [-200

| -200 data taking

US portfolio
review and int/l
Interactions on

ton-scale

- 1000 baseline + R&D

L-1000 construction, staged
data taking



Back-up



MO separation
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spectral density [1/nm]
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TABLE XV. The relevant properties of PEN.

Property Value
Atomic composition [C14H1004]
Density: & 1.35g/cm?
Melting point 270°C

Peak emission A 445+5nm
Light yield ~ 4000 photons/MeV
Decay constant 34.91 ns
Attenuation length ~ H5cm

Young’s modulus: E [GPa)]
Yield strength: o.; [MPal

1.855+0.011 (206 K) 3.708+0.084 (77 K)
108.6+2.6 (296 K)  209.4+2.8 (7T7K)



Phase |l upgrade: BEGe detectors e

y interactions:

- multiple Compton scattering (MSE) ¢!
- sequence of peaks in current signal **TI DEP: i '
- Double escpape peak (DEP): W% acc x7y

proxy for OvBB events -

- 15—

1= :
- 0o
:'.54'_— =
:‘ 1 1 l.
7

events on n+ surface:
- semiconductor junction -> weak E field
- slow current signal

current signal [a.u

p-rays from *Sr:

L <1.6% acc
';:‘ IT_— i i
S 8
g 1_'_— 3
n+ electrode 2 F 3w
(DL ~ 1 mm) 8 E o
l'|. Y \ / 5 0- ............... :-l
\ B : ' : ? tus) anargy JaV]
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%\A d 2Ar
&3 events on p+ electrode:

OVBBO - electron drift faster then holes
- faster charge signal a-rays from *'Am

n =T

222I;n
/ 210p, x Y

100 kW

2sf <8% acc

—_

p+ electrode §‘ I
(DL ~ 0.3pm) ¥ o N
5 3
[JINST 6 2011 P03005, JINST 4 2009 P10007, EPJC 73 (2013) 258] el arrgy Jav]

Matteo Agostini (GSSI/LNGS) Ger’da 7



PSD and LAr veto during Phase [l commissioning

225Ra calibration run (single BEGe string in GERDA):

> 226 R .

%) B  anti-coincidence cut (AC) + Muon veto (MV)

o Ra calibration run B AC + MV + liquid argon veto (LAY

w0 10° AC + MV + Pulse shape discrimination (PSD)

> AC + MV + LAr + Pulse shape discrimination (PSD)
‘§ 10

1200 1400

228Th calibration run:

> : >

D = : B  anti-coincdence cut (AC) + Muon veto (MV) [++]

L o 228Th calibration run AC + MV + liguid #7g0n veto (LAY) <1404

:) AC + MV + Pulsa shape discrimination (PSD) =

g 10° B AC + MV + LAr + Pulse shape discrimination (PSD) g
10°

g 1ot | :

10°

1000 1200 1400 1580 1600 1620
eneigy [keV] energy [keV]

Combined suppression factors: 2742 (for 22°Ra) and 300+28 (for 228Th)

Suppression depends on isotope, location and detector configuration

Vatteo Agostini (GSSI/LNGS) main components before LAr veto/PSD: 0
o a from 210pg 225R,

o B from 42K G
o v from 214Bj 208T] e rda




Ov2[3 decays

Double Beta Decay

germanium 76

* Two 3 decays at the same time
* Only a few isotopes able to undergo 23

2VBB: (A, Z) > (A, Z+2) + 2¢ + 2V

2nd order process, observed, T,, ~ 1019-1024 yrs

%Ge: T,, ~10%" yrs

TABLE V. Isotopic abundance and Q-value for the known
25 emitters [175].

[sotope isotopic abundance (%) Qs [MeV]
BCa 0.187 4.263
CGe 7.8 2.039
%2Ge 9.2 2.998
A 2.8 3.348
100\ 9.6 3.035
16cq 7.6 2.813
130Te 34.08 2.527
136X e 8.9 2.459
150N 5.6 3.371

Qpg = M(Z+2)-M(Z) -2me
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e No Isotope
“theoretically’” better than
another

e Phase Space and NME
inversely correlated. Tend

to compensate In rate

Choice informed mostly by
experimental/practical criteria
* Enrichment cost

* Energy resolution

* Background levels of related
material and design at Q-value
* Scalability




cxperimental sensitivity

® [hisis essentially a counting exercise in the
presence of background

® Sensitivity Is dominated by Poisson counting
around the Q-value (RO

M-t
S~ Ef\ run non-zero background

S: sensitivity t.,; measurement time
e: efficiency | BI: background index
f: abundance of Ovpp isotope AE: energy resolution at QBB

M: detector mass




Nuclear Matrix Element values from various nuclear models

Rept.Prog.Phys. 80 (2017) 4,046301
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* Various models predict quite different values, throughout the isotope A range
* Affects the conversion from T2 10 Mee



Ov2[3 decays

P - P_ OVBB - (A.7) — (A. Z+2) + 2¢

e = * & If neutrinos are Majorana fermions

(Majorana mass term)
L

Prosaically: v = v
* Not only process avallable, but the one

with the highest sensitivity
* BSM (SM only Dirac terms with L-R

fermions)
0y |~ . Oy 4 0v[2 \m ce/ \ Z 2
(.TIIZ G ( QBB' Z) ‘M M, _‘ Uei’ni
m, ,.
nuclear matrix element effective Majorana
phase space factor neutrino mass

NB: experiments measure T




z (mm)

P S D | n G e : C O n C e p-t See also: Nucl Instrum.Meth.A 891 (2018) 106-110

BEGe — p+ contact n+ contact
301
201
101
0; | Lo b b by b ; ' '
B L B L . o, e Markedly different Q and A spectra according
r{mm ~“~ ~~,' \\ . .
to where energy deposition occurs in crystal
anodle Tt s , , - , , ,
ca[hode I 1 I | | | | -
electrons
-------- holes 5 -
©) interaction point o )
; : ! P
=14}
3 -
_ .
u —
] | | N
I 1 I | | | | |
200 -
"""" 3 150 A
5 100 | -
e Uniform configuration of weighting potential in PC ° 50t -
enhances (>90%) “ " type wrt others 0 T ———— e

0 100 200 300 400 500 600 700 800

time [ns]

e |f all ionization happens in single site (SSE), Q and A proportional and compatible with single
cluster

* [f jonization is diffused (Bethe-Bloch or Compton, MSE), total Q is split in smaller peaks of A




Origin of radioactive bkgs

® d mainly from 2/0Po (T=138 days) coming from 238U chain on diode surface and
attracted to migrate towards p* electrode by its strong field

® Vycomes from
® various branches of U and Th chain on materials (FETs, cables, Cu mounts, plastics);

® and from AA2Ar — 4042 — 40MM2C3" decays (K 1on drifted by LAr convective
motion and electric field lines towards n* dead layer = SSE)

® [3 mainly from 4942K " decays close to diodes, same as above
O
12.360 h FRn
2 0 X
32.9y T Lo
= 2 T 19K g? & &
2 12 B o o
~ J5Ar Q,=35254  §%57 & L%
™ 18 é‘oé\éséb &4\2}/ VQO,%%?
QB_=6OO 0.07% 50, 3= S99 g@_%%, (:‘ZW 3446.96 55 te
j B o ° 4
4+ 19 SO G ST 215241 B0
0.05% 9.0, 2+ v T IOQT é\‘ibco_éy' 242417 1401
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42 |
1 9K
81.90% 9.5 O+ Y Yy v 0 ctable




Charge / current (a.u.)

Why is PS

GERDA Background Estimate:

D Important?

210pg

Th&U
chains
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L Ar active veto, related specs

® A excmer scintillates at 128 nm (VUV), LY O(10k photons/MeV

deposited), singlet and triplet states mix in fast (~few ns) and slow (~ 1.5 ps)
components

® triplet attenuation highly depends on recombination with
impurities (N, O, Xe ppm-to-ppb) sneaking at Ar distillation

® ‘class 5.5" LAr from plant + in place at LNGS ad-hoc
system to purify LAr as it flows between tank and cryostat

® [xpected to result in Aat = I m, small wrt cryostat radius

LLAMA device in LAr will
monitor in time attenuation
and triplet lifetime




Front-End electronics
® | ow-Mass (radio-pure) FE on ULTEM inert plastic (a la M|D)

feeding into "CC4" CSA pre-amp (a la GERDA)

® | MFE: production tested in “Post-GERDA" tests last year, ok -> production/
shipment to LNGS being finalized

o (CC4 ~2./V output to flange/air, production complete, random screening to
be performed

LMFE in ULTEM mount

Harwin pins

200 pum thick

ULTEM mount « **
L P

W
(

SN
1] - e~

wire bond / ff
s, 1

Flange connection VFE connection




UG electro-formed copper

® Applies experience of M|D, which used |.2 tons of UGEFCu

because of its radio-purity (< 0.1 uBg/kg Th/U chains, very
low In cosmogenic ¢0Co)

® 3 new EF baths were constructed at SURF to supply clean
Cu for detector housing components

® Advancements in the understanding of post machining

contamination of plastics and metals will feed into L-1000
effort

LEGEND-200 at LNGS

EFCu can be placed next to
detectors, in LAr: improves signal/
noise and, consequently, PSD




PEN plates: veto yourselt !

Low (5-7 g) mass geometry optimized for L-200

PEN — Poly(ethylene 2,6-naphthalate) is a scintillating
plastic (/3 LY of conventional plastic scintillators)

® wavelength-shifts to ~450 nm the 28 nm
photons from LAr

Mechanically stronger than silicon, stronger than Cu at
cryogenic temperatures (1=8/ K)

Meets radio-purity req. < | UBg/piece for Ra/Th

Replaces Si plates (GERDA)

PEN holders deployed in LEGEND
"post-GERDA test” at LNGS in first
half of 2020 (despite COVID...)

On-going further R&D for additional
cleanliness and improved optical
properties for L-1000

A7 |

Plates fitting read-out electronics




UGAr to reduce “2Ar/42K

2K from [3 decay of “2Ar resulting from cosmogenic activation in various
ProCesSSES [e.g. PRD 100, 072009 (2019)]

® |ow fraction in atmospheric Ar, but high enough activity

Underground Ar significantly less subject to CR activation — highly depleted
IN such isotopes (down by factors ~10%)

Proposed to use part of the production from the ARIA plant, estimated need
2| tons (from 2023): use only in payload cryostats, AAr in outer volume

lon collection depends on n* dead-layer thickness: to be optimized
Use of nylon cylinders around strings for further screening under discussion

® shields, but only partially; self-vetoes, but only partially

® could be good enough (after PSD and LAr veto), several studies done and on-going for
GERDA and L-1000 [e.g. EPIC 75, 506 (2015)]

° Else PEN? Encapsulated detectors (no LAr)? Xe-doped LAr for charge-exchanges!



Cosmic muons

While “prompt” events in time with muon passage can be effectively rejected (95 to 99%) by
water or LAr veto, delayed effects can generate disturbance

Particularly production of Ge isotopes from capture of spallated neutrons (7/mGe)

At SNO depth w/o further shielding expect ~5 108 cts/kev/kg/yr (19 of desired Bl)

e at LNGS x100, but gain “virtual” depth operating the LAr active veto with an
independent trigger for delayed detection of n capture on “0Ar (factor of x 10 reduction in y-

induced 7/mGe decays?) [Eur.Phys.J.C78 (2018) no.7, 597]

® developments (using also ML) will be tested at L-200

U Event ®Ge (n,y) ""™Ge 40Ar (n,y) Y1Ar
A\ ' E.‘ :
[ \“ Ge
........ 1 S~ ~ — '~.....- -
\NNY t
[\LAr
8
W t
Water
' ; o
tli <10 us tprompt ~ 270 ps tdelayed t



Alpha

® [hose A depositing on diode surface making it through the p*
electrode or the this-surfaced insulating grooves

® most of the surface is a too-thick n*

® Hard to estimate a priori (consider upper limits from previous
experiments)

o PS5D, PSD and yet improved PSD

complementary techniques in GERDA and M]D more or less effective
depending on charge diffusion in detector geometry (BEGe vs PPC)

therefore, design the LEGEND-1000 |CPC detector electrode
geometry based on the relative size of the detector's passivated surface



Selection of additional R&D

|arger mass detectors: different configurations with similar weighting
botential being still pursued as alternatives to baseling, but need time

Material:

® clean manufacturing of alloys and plastics by laser-excitation additive “3-D
printing” (SLA)

® |n-house synthesis of more radio-pure PEN

FE: Reduced front-end substrate and connector mass, related to new
ASIC radio-pure boards iNstis po9o22)

All signal cables in re-entrant tube from clean Kapton (incl Diode HV)

Active veto: variants include Xe-doped LAr; walls of SIPM instead of
“dirtier” fibres



Connection with mass ordering

" normalorder. [ inverted ordering

" normalorder. [ inverted ordering

| GERDA .08

me [eV]

| GERDA

0.06

usually in |
scale, here zoo
around 1O

0.04

0.02
O | | | | | | | | | O T
0.05 0.1 0.15 0.05 0.1 0.15 0.2 0.25
Might [eV] 2 [eV]

(Mee) = |U621ml + UZ,mqe™™ + U623m3ew|

* Limits on mee from above, can try to rule out IH

e electron flavour: mix of mass eigenstates, entering <mee> differently for the two MO
* nuclear matrix element uncertainties: biggest spoller in the conversion (shaded area)




Counts per keV

Simulated example spectrum, after cuts,
from 10 years of data
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The Baseline Design: Underground Liquid Argon

* L1000 needs 20-25 t of UGLAr
* Builds on pioneering work of DarkSide collaboration

*  UGAr will be mined at Urania facility (U.S.) 95 t/y

* Logistics and storage technology under development by
DarkSide/ARGO collaboration for LNGS and SNOLAB

* Expression of interest from INFN president! and DarkSide leadership
* UGAr production for LEGEND-1000 in 2023 (after DS-20k)

S
4

(95T/year)

\ "/, UG Sorage “Zfbiﬁ

Urania r? >
330kg/day é
o o

g ) (\-\ —
Credit: DarkSide / ARGO collaboration

UGAr is depleted in 42Ar (3°Ar)

Iso- @ Abun- Half-life Decay @ Pro-
tope dance (t1/2) mode @ duct

Ar | 0.334% stable

37Ar | syn 35d | € 3¢

3BAr  0.063% stable
T ——

40Ar | 99.604% stable

“Ar  syn | 109.34 min | B~ 4K
-4:21:\5::5@::::::32:9-?: =EE ::"EK:

L% .we are confident that the production of the required UAr can be completed in a time scale useful for the accomplishment of the LEGEND-1000

experiment.. The present statement is an expression of interest and availability from INFN...”

Stefan Schonert | LEGEND | 2021-09-30
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