The quest for LFV through 0v2β decays in Germanium:

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

G. Salamanna (Roma Tre University & INFN) Le Rencontres, La Thuile, March 2023

 Stems from previous achievements with Germanium and puts together their best in terms of technology and know-how

- Two-staged approach with a ''stepping stone'' of ~200 kg (**Legend-200**) towards the full-fledged experiment with one-ton scale (**Legend-1000**)
- What's to "demonstrate"? Development of large Point-contact detectors, layout can be scaled up, bkg reduction can be taken even farther aggressively

Collaboration Meeting, GSSI Oct 2022

How far can we go?

⁷⁶Ge (91% enr.)

• Value of $T_{1/2}$ for which a ⁷⁶Ge-enriched experiment has a **50%** chance to observe a signal above background with **30** significance

• Less than one background count expected in a 4σ Region of Interest (ROI) with 10 t y exposure

LEGEND-200 site: LNGS

- L-200 uses GERDA infrastructure at LNGS
- Ge detectors ''dipped'' in LAr in pre-existing cryostat
- Mountain provides screening against cosmic rays

- Expected external bkg sources:
 - \Im γ from U/Th decays,
 - 🏺 neutrons,
 - remaining cosmic rays (prompt and delayed)
- Intrinsic:
 - radioactive surface contamination,
 - [₽] ³⁹Ar decays,
 - cosmogenic activation of isotopes

• high-purity germanium (HPGe) detectors enriched in ⁷⁶Ge to (86–88)%: source + detector

- detectors mounted on low-mass holders (to **minimize** radioactive bkg)
- embedded in liquid argon (LAr): cryogenic coolant and detector against external radiation
- ultrapure water tank: buffer around cryostat as additional **absorber** + Cherenkov veto

A heart of (High Purity) Germanium

R. Cooper et al., NIM A665

25 (2011)

General concept

• p-type diodes with point-contact

• Charge collection at p⁺ electrode (Boron-implanted), polarization potential applied to n⁺ electrode (diffused Li)

ICPC

- ~60% of L-200 detectors are of this type
- Larger mass (1.5-2.0 kg, up to <2.5> kg for L-1000)
- but retaining similar charge drift times across volume (important for Pulse Shape Discrimination, see later)
- Reduced surface-to-volume ratio (α and β): less dirty cables, pre-amps
- Lower cost per kg, higher efficiency

Speed [cm/ μ s] with paths and isochrones

-20 -10 0 10 20 Radial position [mm]

-30

30

Origin of radioactive bkgs

- α mainly from ²¹⁰Po (τ=138 days) coming from ²³⁸U chain on diode surface and attracted to migrate towards p⁺ electrode by its strong field
- γ comes from
 - various branches of U and Th chain on materials (FETs, cables, Cu mounts, plastics);
 - and from ${}^{40/42}Ar \rightarrow {}^{40/42}K \rightarrow {}^{40/42}Ca^*$ decays (K ion drifted by LAr convective motion and electric field lines towards n⁺ dead layer = SSE)
- β mainly from ^{40/42}K decays close to diodes, same as above

Expected bkg budget L-200

LAr active detector

- Retain a crucial element of GERDA: instrument
 LAr volume to read out light from scintillation
 - 2 shrouds of optical fibers for enhanced coverage coated in TBP as WLS + SiPM with new FE electronics
 - Reflective foil around outer shroud to increase light collection
- Veto radiogenic backgrounds but can also measure energies and identify processes (see *later*)
- Self-vetoeing from:
 - radioactivity from fibers
 - high-activity β decays of sub-dominant isotope
 ³⁹Ar [1.41 Bq/l (e.g. NIM A 574 83)]

Benefit of active veto (lesson from GERDA)

Current status...

☑ 140 kg taking data since June

- Taking regular physics and calibration data with various trigger streams
- Reach 200 kg by the end of the year
- Goal (5 yr runtime):
 - Discovery sensitivity T1/2 > 1027 yr (99.7% C.L.)
 - m($\beta\beta$) < 33 71 meV

First 60 kg: taken data over summer

• commissioning and performance evaluation

Initial commissioning performance

- Preliminary energy resolution from August commissioning runs of 60 kg in full set-up
- FWHM ~ 2.8 keV at $Q(\beta\beta)$
- Resolution does <u>not</u> depend on detector <u>mass</u>, heavier detectors also show excellent reso
 - Optimisation work being finalised on read-out/noise on some channels

- ²²⁸Th sources (T_{1/2}=1.9 yr, A~5 kBq/source)
- Response checked at various energies about once a week
- Used for resolution and to extract benchmark performance of PSD on radiogenic backgrounds

Preliminary SiPM perfo in 60 kg runs

$L-200 \rightarrow L-1000$

 \bullet Largest reductions are on ${}^{42}\text{K}, \alpha, \mu$

• + "trimming" here and there on radio-purity of materials, esp. cables

• Need specialised work to stop cosmogenic bkg, esp. if at LNGS

L-1000 preliminary design

- String concept replicated in 4 payloads, in total ~400 detectors
- Dedicated Underground Ar cryostat,
 ~3m³ in volume
- Modest-sized LAr cryostat in "water tank" (6 m Ø LAr, 2-2.5 m layer of water) or large LAr cryostat w/o water (9 m Ø)
 - Other options still remain under investigation in order to achieve max bkg reduction (esp. cosmogenic)
- Site yet TBD (LNGS? SNO?): both offer some advantages and some limitations
- Staged data-taking in payloads (2025-2030?) as detector production progresses
- R&D on-going on several crucial improvements: larger ICPC, electronics, neutron veto, use of UG Ar, radio-cleaner fibers

2 examples of remedies against bkg

- UGEFCu used in L200 b/c of its high radio-purity (≤ 0.1 µBq/kgTh/U chains, very low in cosmogenic ⁶⁰Co)
- Advancements in the understanding of post machining contamination of plastics and metals for L-1000

- PEN Poly(ethylene 2,6naphthalate) is a scintillating plastic (1/3 LY of conventional plastic scintillators)
- Meets radio-purity req. $\leq 1 \mu Bq/piece$ for Ra/Th, it's self-vetoing

Low (5-7 g) mass geometry optimized for L-200

(Approx) timeline

MO separation

Phys. Rev. D 96, 053001

Active veto optical parameters

Property	Value		
Atomic composition	$[C_{14}H_{10}O_4]_n$		
Density: δ	$1.35 \mathrm{g/cm^3}$		
Melting point	$270^{\circ}\mathrm{C}$		
Peak emission λ	$445{\pm}5\mathrm{nm}$		
Light yield	$\approx 4000\mathrm{photons/MeV}$		
Decay constant	34.91 ns		
Attenuation length	$\approx 5\mathrm{cm}$		
Young's modulus: E [GPa]	1.855 ± 0.011 (296 K)	3.708 ± 0.084 (77 K)	
Yield strength: σ_{el} [MPa]	$108.6 \pm 2.6 (296 \mathrm{K})$	$209.4\pm2.8~(77\mathrm{K})$	

TABLE XV. The relevant properties of PEN.

Phase II upgrade: BEGe detectors

Gerda 7

Matteo Agostini (GSSI/LNGS)

PSD and LAr veto during Phase II commissioning

²²⁶Ra calibration run (single BEGe string in GERDA):

9

0v2B decays

- Two β decays at the same time
- Only a few isotopes able to undergo 2β

 $2\nu\beta\beta: (A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2\nu_{e}$

2nd order process, observed, $T^{}_{1/2} \sim 10^{19}\text{--}10^{24} \mbox{ yrs}$ $^{76}Ge; T^{}_{1/2} ~\sim 10^{21} \mbox{ yrs}$

TABLE V. Isotopic abundance and Q-value for the known $2\nu\beta\beta$ emitters [175].

Isotope	isotopic abundance (%)	$Q_{\beta\beta}$ [MeV]
48 Ca	0.187	4.263
$^{76}\mathrm{Ge}$	7.8	2.039
82 Se	9.2	2.998
$^{96}\mathrm{Zr}$	2.8	3.348
$^{100}\mathrm{Mo}$	9.6	3.035
$^{116}\mathrm{Cd}$	7.6	2.813
$^{130}\mathrm{Te}$	34.08	2.527
136 Xe	8.9	2.459
$^{150}\mathrm{Nd}$	5.6	3.371

 $Q_{\beta\beta} = M(Z+2)-M(Z) - 2m_e$

Comparing different isotopes

Experimental sensitivity

- This is essentially a counting exercise in the presence of background
- Sensitivity is dominated by Poisson counting around the Q-value (ROI)

Nuclear Matrix Element values from various nuclear models

• Various models predict quite different values, throughout the isotope A range

 \bullet Affects the conversion from $T_{1/2}$ to m_{ee}

$0v2\beta$ decays

 $0\nu\beta\beta:(A,Z)\to(A,Z+2)+2e^{-1}$

• \Leftrightarrow if neutrinos are Majorana fermions

(Majorana mass term)

- Prosaically: $V = \overline{V}$
- Not only process available, but the one with the highest sensitivity
- BSM (SM only Dirac terms with L-R fermions)

NB: experiments measure T^{0v}1/2

PSD in Ge: concept

• If all ionization happens in single site (SSE), Q and A proportional and compatible with single cluster

• If ionization is diffused (Bethe-Bloch or Compton, MSE), total Q is split in smaller peaks of A

Origin of radioactive bkgs

- α mainly from ²¹⁰Po (τ=138 days) coming from ²³⁸U chain on diode surface and attracted to migrate towards p⁺ electrode by its strong field
- γ comes from
 - various branches of U and Th chain on materials (FETs, cables, Cu mounts, plastics);
 - and from ${}^{40/42}Ar \rightarrow {}^{40/42}K \rightarrow {}^{40/42}Ca^*$ decays (K ion drifted by LAr convective motion and electric field lines towards n⁺ dead layer = SSE)
- β mainly from ^{40/42}K decays close to diodes, same as above

Why is PSD important?

GERDA Background Estimate:

LAr active veto, related specs

- Ar₂ excimer scintillates at 128 nm (VUV), LY O(10k photons/MeV deposited), singlet and triplet states mix in fast (~few ns) and slow (~1.5 µs) components
- triplet attenuation highly depends on recombination with impurities (N, O, Xe ppm-to-ppb) sneaking at Ar distillation
- ''class 5.5'' LAr from plant + in place at LNGS ad-hoc system to purify LAr as it flows between tank and cryostat
- Expected to result in $\lambda_{att} \leq Im$, small wrt cryostat radius

LLAMA device in LAr will monitor in time attenuation and triplet lifetime

Front-End electronics

- Low-Mass (radio-pure) FE on ULTEM inert plastic (a la MJD) feeding into "CC4" CSA pre-amp (a la GERDA)
- LMFE: production tested in "Post-GERDA" tests last year, ok -> production/ shipment to LNGS being finalized
- CC4: ~2.7V output to flange/air, production complete, random screening to be performed

UG electro-formed copper

- Applies experience of MJD, which used 1.2 tons of UGEFCu because of its radio-purity ($\leq 0.1 \mu$ Bq/kgTh/U chains, very low in cosmogenic ⁶⁰Co)
- 3 new EF baths were constructed at SURF to supply clean Cu for detector housing components
- Advancements in the understanding of post machining contamination of plastics and metals will feed into L-1000 effort

Legend-200 at LNGS

EFCu can be placed next to detectors, in LAr: improves signal/ noise and, consequently, PSD

PEN plates: veto yourself !

- PEN Poly(ethylene 2,6-naphthalate) is a scintillating plastic (1/3 LY of conventional plastic scintillators)
 - wavelength-shifts to ~450 nm the 128 nm photons from LAr
- Mechanically stronger than silicon, stronger than Cu at cryogenic temperatures (T=87 K)
- Meets radio-purity req. $\leq 1 \ \mu Bq$ /piece for Ra/Th

- Replaces Si plates (GERDA)
- PEN holders deployed in LEGEND "post-GERDA test" at LNGS in first half of 2020 (despite COVID...)
- On-going further R&D for additional cleanliness and improved optical properties for L-1000

Plates fitting read-out electronics

UGAr to reduce 42Ar/42K

- ⁴²K from β decay of ⁴²Ar resulting from cosmogenic activation in various processes [e.g. PRD 100, 072009 (2019)]
 - low fraction in atmospheric Ar, but high enough activity
- Underground Ar significantly less subject to CR activation → highly depleted in such isotopes (down by factors ~10⁴)
- Proposed to use part of the production from the ARIA plant, estimated need
 21 tons (from 2023): use only in payload cryostats, AAr in outer volume
- Ion collection depends on n⁺ dead-layer thickness: to be optimized
- Use of nylon cylinders around strings for further screening under discussion
 - shields, but only partially; self-vetoes, but only partially
 - could be good enough (after PSD and LAr veto), several studies done and on-going for GERDA and L-1000 [e.g. EPJC 75, 506 (2015)]
 - Else PEN? Encapsulated detectors (no LAr)? Xe-doped LAr for charge-exchanges?

Cosmic muons

- While "prompt" events in time with muon passage can be effectively rejected (95 to 99%) by water or LAr veto, delayed effects can generate disturbance
- Particularly production of Ge isotopes from capture of spallated neutrons (^{77,m}Ge)
- At SNO depth w/o further shielding expect ~5 10⁻⁸ cts/kev/kg/yr (1% of desired BI)
 - at LNGS ×100, but gain "virtual" depth operating the LAr active veto with an independent trigger for delayed detection of n capture on ⁴⁰Ar (factor of ×10 reduction in μinduced ^{77,m}Ge decays?) [Eur.Phys.J. C78 (2018) no.7, 597]
 - developments (using also ML) will be tested at L-200

Alpha

- Those α depositing on diode surface making it through the p⁺ electrode or the this-surfaced insulating grooves
 - most of the surface is a too-thick n⁺
- Hard to estimate a priori (consider upper limits from previous experiments)
- PSD, PSD and yet improved PSD
 - complementary techniques in GERDA and MJD more or less effective depending on charge diffusion in detector geometry (BEGe vs PPC)
 - therefore, design the LEGEND-1000 ICPC detector electrode geometry based on the relative size of the detector's passivated surface

Selection of additional R&D

- Larger mass detectors: different configurations with similar weighting potential being still pursued as alternatives to baseline, but need time
- Material:
 - clean manufacturing of alloys and plastics by laser-excitation additive ''3-D printing'' (SLA)
 - In-house synthesis of more radio-pure PEN
- FE: Reduced front-end substrate and connector mass, related to new ASIC radio-pure boards (JINST15 P09022)
- All signal cables in re-entrant tube from clean Kapton (incl Diode HV)
- Active veto: variants include Xe-doped LAr, walls of SiPM instead of ''dirtier'' fibres

Connection with mass ordering

- \bullet Limits on m_{ee} from above, can try to rule out IH
 - \bullet electron flavour: mix of mass eigenstates, entering $<\!m_{ee}\!>$ differently for the two MO
 - <u>nuclear matrix element uncertainties</u>: biggest spoiler in the conversion (shaded area)

Simulated example spectrum, after cuts, from 10 years of data

The Baseline Design: Underground Liquid Argon

- L1000 needs 20-25 t of UGLAr
- Builds on pioneering work of DarkSide collaboration
- UGAr will be mined at Urania facility (U.S.) 95 t/y
- Logistics and storage technology under development by DarkSide/ARGO collaboration for LNGS and SNOLAB
- Expression of interest from INFN president¹ and DarkSide leadership
- UGAr production for LEGEND-1000 in 2023 (after DS-20k)

UGAr is depleted in ⁴²Ar (³⁹Ar)

lso- tope	Abun- dance	Half-life (t _{1/2})	Decay mode	Pro- duct
³⁶ Ar	0.334%	stable		
³⁷ Ar	syn	35 d	8	³⁷ Cl
³⁸ Ar	0.063%	stable		
³⁹ Ar	trace	=== = 269 y=	BETT	³⁹ K
⁴⁰ Ar	99.604%	stable		
⁴¹ Ar	syn	109.34 min	β-	⁴¹ K
⁴² Ar	syn	=== 32.9 y	= β =====	⁴² K

¹ " ...we are confident that the production of the required UAr can be completed in a time scale useful for the accomplishment of the LEGEND-1000 experiment.. The present statement is an expression of interest and availability from INFN..."

LEGEND