

N2 liquefaction plant for the LNGS underground site

Paolo Gorla - LNGS

Develop, procure, and install a N2 liquefaction system for the needs of the LNGS underground Lab (operating experiments and facilities, DS20K, future projects...)

- Reliable plant (stable over time, minimal maintenance stops, robust system)
- Tunable cooling capacity (to handle the variations over time in the underground lab)
- Minimize the environmental impact (minimise road transport)
- Minimize the truck induced disturb on the Lab activity

Chosen technical solution: Turbo Bryton

- High efficiency, reliability and lifetime (developed for natural gas reliquefaction on boats).
- 100% Oil-free (magnetic bearings)
- Flexibility and modularity: stand-by mode with a low rotation speed and immediately subcool LN2 at order, tunable cooling power.

- The TBF system cools down a closed circuit gas mixture
- N2 is cooled and liquefied trough heat exchange
- The inlet into the heat exchanger is designed for the specific application

- LNGS users: ~16 kW @ 68 K. LN2 is taken at 77K and lost to air.
- DS20k: Preliminary requested cooling power:
 - 11 kW @ 85.5K (normal operation)
 - 18 kW @ 85.5K (initial cooldown)

Closed N2 line, ~all N2 is recollected and reliquefied.

- LNGS users: ~16 kW @ 68 K. LN2 is taken at 77K and lost to air.
- DS20k: Preliminary requested cooling power:

 - 11 kW
 5K (normal operation) 17 kW + UAr @85.5K?
 18 kW
 5.5K (initial cooldown) 38-56 kW @85.5K? (at TBF system)

Closed N2 line, ~all N2 is recollected and reliquefied.

Selected system

System name	Electrical consumption	Cooling power @68K	Water cooling	Re-liquefaction capability	Size (LxWxH) (m)	Mass	Cost
TBF-175	200 kW	17 kW	9.3 Kg/s	~0.2 t/h ~174 smc/h	9.5 x 1.7 x 2.65	15 t	2.7 M€
TBF-350	410 kW	40 kW	18.6 Kg/s	~0.45 t/h ~394 smc/h	11 x 1.7 x 2.65	17 t	3 M€

- Very compact footprint
- Maintenance: 3-4 days each 5 years
- Delivery time: 14 months from the tender assignment
- Power: 20 kW for LNGS users, 20 kW for DS20k

Selected system

System name	Electrical consumption	Cooling power @68K	Water cooling	Re-liquefaction capability	Size (LxWxH) (m)	Mass	Cost
TBF-175	200 kW	17 kW	9.3 Kg/s	~0.2 t/h ~174 smc/h	9.5 x 1.7 x 2.65	15 t	2.7 M€
TBF-350	410 kW	40 kW	18.6 Kg/s	~0.45 t/h ~394 smc/h	11 x 1.7 x 2.65	17 t	3 M€

- Very compact footprint
- Maintenance: 3-4 days each 5 years
- Delivery time: 14 months from the tender assignment
- Power: 20 kW for LNGS users, 20 kW for DS20k

<u>TBF-350 is the most</u> <u>suitable plant</u>

6/12/2022

13 Thuố pô

8

Pressure Swing Adsorber

N2 generation

- Needed to compensate for losses due to LNGS LN2 general usage and topping up on the DS20k circuit
- Based on Pressure Swing Adsorption process
- No cryogenics needed
- Purity up to > 99.999% nitrogen (5.0)
- Modularity (multiple modules)

Paolo8 5 Filtro universale

Paolo Gorla

- Budget allocated for the TBF 350 system.
- Tender postponed to (first quarter of) 2023, final numbers from DS20k must be defined to design the heat exchanger.
- Preliminary circuit layout prepared. In 2023 tenders for final design. ~14 months for delivery.
- System at LNGS in 2024.
- Selection of the N2 separation and purification system. Tender will start as budget will be available.

	PBS number	DN	interface – point –	at the dewar location		at the mechanical interfaces			at the cold end return interface TB				
Name				Р	dm/dt	Т	Р	dm/dt	Т	Р	dm/dt	Т	modes
				Bara	g/s	К	Bara	g/s	К	Bara	g/s	К	
AAr Liquid nitrogen supply	NP.DS.10.N1	TBD	1	4.6	10-85	sub-cool	4.0	10-85	sat	n.a	n.a	n.a	cool-down
				4.6	60	sub-cool	4.0	60	sat	n.a	n.a	n.a	NO
UAr Liquid nitrogen supply		TBD	n.a	n.a	50	sub-cool	4.0	50	sat	n.a	n.a	n.a	cool-down
					8	sub-cool	4.0	8	sat	n.a	n.a	n.a	NO
∑ AAr +UAr	NP.DS.10.N1	TBD	1	4.6	135	sub-cool	4.0	135	sat	n.a	n.a	n.a	cool-down
				4.6	68	sub-cool	4.0	68	sat	n.a	n.a	n.a	NO
AAr Gas nitrogen return	NP.DS.10.N4	TBD	2	n.a	n.a	n.a	2.2	10-85	300-175	1.5	10-85	300-175	cool-down
				n.a	n.a	n.a	2.2	60	175	1.5	60	175	NO
	•					·		•					

• Table still incomplete

- Relevant number for the system load is the interface at TBF
- >19 kW at TBF too high for the system

Turbo-Bryton (TBF) systems from Air Liquide

- High efficiency also at partial load (at 60 % partial load, the overall efficiency is only decreased by 3 %)
- The cold power is automatically adjusted from 0 to 100 % by varying the speed of the motor. No valves nor heater are needed.
- Standby mode consume only 5-10% electrical power (depending on the product)

Turbo-Bryton (TBF) systems from Air Liquide

