

Natural rocky shore where *Cystoseira* lives

Natural reef with *Cystoseira*

Detail of apical parts of *Cystoseira amentacea*

Artificial reef with clay tiles, after last summer's deployment

Our idea for the development of the holders for algae

Thickness: 10 cm Width: 20 cm Lenght: 15 cm

Top view

Wave incidence angle

Software di disegno in 3D

Fig. 1. A) GSPD design-tool canvas in Grasshopper3D, B) The toolpath outcome after parameter selection as appear in Rhino.

Primo prototipo

DETAIL.

Hole size for approx 5mm diameter screw. Might vary based on 3dprint technique and resolution

DESIGN OPTION

Volume: 0,0017 m³ approx. Weight: 4.08 kgs approx.

All Dimensions in mm

SIDE VIEW

SECTION AA

PERSPECTIVE

DESIGN OPTION
Hole size for approx 5mm
diameter screw.
Might vary based on 3dprint
technique and
resolution

Volume : 0.00095 m³ approx. Weight : 2.3 kgs approx.

SIDE VIEW

Terzo prototipo

FRONT VIEW

DESIGN OPTION Hole size for approx 5mm diameter screw. Might vary based on 3dprint technique and resolution

Volume: 0.001011 m³ approx. Weight: 2.429 kgs approx.

Fig. 2. Views of some tabular tool-paths generated with the GSPD design tool.

Fase di stampa mediante stampante 3D

Fig. 3. Repeating pattern design with different climbing angle parameters. Leftmost- the most moderate climb with 0.01° constant climbing angle. Rightmost - the steepest climb with an angle of 2° . During the printing the machine tool head is way up and the clay just pulled along.

Fig. 6. Birds eye view of different varieties of Gravity-Stimulated Printed Designs.

Fig. 5. Self-locking system design of the bio-inspired tabular units. A) constructed reef; B) one-leg unit; C) two-leg unit, which is made from two parts; and D) three-leg unit, also made from two parts.

Fig. 7. Underwater views of the tabular designed ARs that were developed using the GSPD method.