Laboratori Nazionali del Gran Sasso

Le strutture

Edifici esterni

Laboratorio sotterraneo

Perchè non riusciamo a vedere le stelle di giorno?

Se vogliamo vedere un segnale molto piccolo, ad esempio la luce delle stelle, dobbiamo liberarci delle sorgenti di luce più forti (il sole)

Perchè andare sottoterra?

Per studiare gli eventi rari è necessario un ambiente sotterraneo in grado di schermare i raggi cosmici che arrivano sulla terra

Le caratteristiche dei Laboratori sotterranei

> 1400 m di roccia sovrastante

- Riduzione dei raggi cosmici di 1.000.000 di volte
- I più grandi al mondo oggi in funzione

Superficie: 17.800 m²

Volume: 180.000 m³

Internazionalità dei Laboratori Nazionali del Gran Sasso

Total users: **N. 981** Italian users: **N. 417** Foreign users: **N. 564**

Breve storia dei Laboratori del Gran Sasso

- > 1979: proposta di A. Zichichi al Parlamento Italiano
- 1982: approvazione del Progetto di costruzione dei LNGS
- > 1987: costruzione completata
- 1989: inizio presa dati del primo esperimento (MACRO)

Uno sguardo all'interno

- Le 3 sale sperimentali misurano circa 100 m di lunghezza, 20 m di larghezza e 18 m di altezza
- Circa 22 esperimenti in presa dati o in costruzione
- Il più sensibile laboratorio (LOW ACTIVITY LAB) dedicato alla misura e all'identificazione dei contaminanti dei materiali

Principali argomenti di ricerca. **Neutrini**

- Sono i messaggeri dell'Universo
- Comportamento unico nel panorama delle particelle (neutrino di Majorana)
- Potrebbero spiegare la prevalenza della materia sull'antimateria nell'Universo

Borexino

gy

Misura in tempo reale di neutrini prodotti da reazioni di fusione pp e ciclo CNO

Misura in tempo reale dei geoneutrini

CUORE/CUPID

La ricerca del doppio decadimento beta senza emissione di neutrini:

 CUORE: 988 rivelatori
bolometrici di TeO₂ (il metro cubo più freddo dell'Universo)

2 CUPID: utilizzo di rivelatori bolometrici di Li₂MoO₄ arricchiti con l'isotopo ¹⁰⁰Mo(CUPID)

LEGEND 200

Ricerca del doppio decadimento beta senza emissione di neutrini del 76Ge attraverso l'utilizzo di 200 kg di rivelatori a germanio

Materia Oscura

Quello che conosciamo rappresenta solo la punta dell'iceberg

Principali argomenti di ricerca: Materia Oscura

La materia di cui siamo fatti noi è meno del 5%

Circa il 27% è materia oscura

Il restante, più del 68%, è energia oscura

XENON/nT

Rivelazione della materia oscura attraverso l'utilizzo di 8.3 tonnellate di xenon liquido altamente radiopuro

DarkSide-20K

20 tonnellate di argon liquido ottenuto da giacimenti sotterranei (prodotto in Colorado)

Principali argomenti di ricerca: **Astrofisica Nucleare**

Studiare in un laboratorio sotterraneo il cuore delle stelle per rispondere ad alcune affascinati domande

Come nasce una stella? Come evolve? In che modo si producono gli elementi presenti nell'Universo?

Astrofisica Nucleare

Multidisciplinarietà e applicazioni ai LNGS

) II piombo romano

- Additive Manufacturing
- CHNet: Monete di Ybshm/Ebusus
-) Biologia

Attività di comunicazione scientifica e progetti di didattica

SHARPER International Cosmic Day 3 Gran Sasso Videogame

Lab2Go

3 Art&Science

Pint of Science

