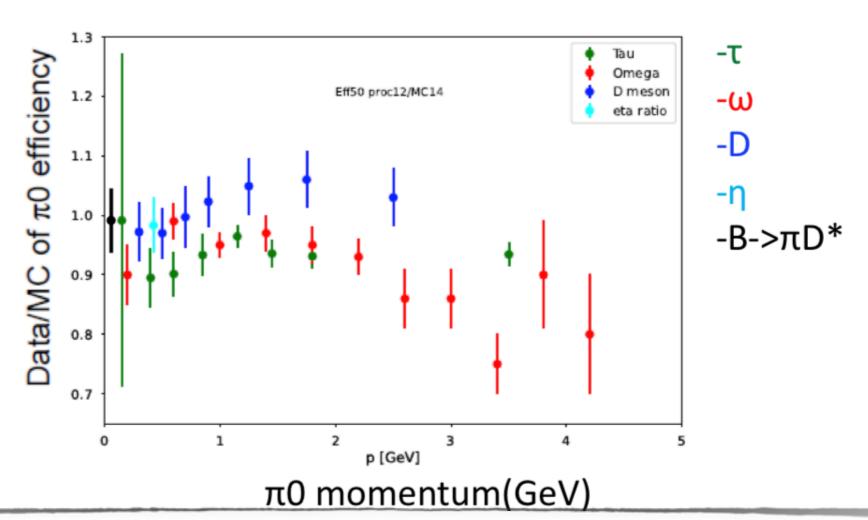
Pi0 efficiency with D->KSpi0?

From last PGM (Koga-san)

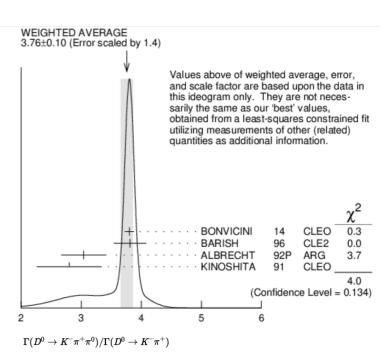
$\pi 0$ efficiency measurements with MC14


π0 momentum (GeV)	0.2-1.0	0.2-3.0	0.4-5.0	0.2-4.5
signal mode	η→3π0	D→Kππ0	τ→3ππ0ν	$ω$ γ _{ISE} , $ω$ \rightarrow πππ0
reference mode	η→γγ	D→Kπ	τ→3πν	(tag and probe)
output	$\epsilon_{data}/\epsilon_{MC}$	$\epsilon_{data}/\epsilon_{MC}$	$\epsilon_{data}/\epsilon_{MC}$	$\varepsilon_{\text{data}}, \varepsilon_{\text{MC}}, \varepsilon_{\text{data}}/\varepsilon_{\text{MC}}$
bin	single bin	momentum	momentum	momentum
multiplicity	high	high	low	low
analyzer	Koga	Koga	Zuzana	Mirra
status	<u>accepted</u>	<u>accepted</u>	writing B2N thesis	writing B2N
precision	~4% (PDF model)	~4%(D decay BR)	~2%	not yet (?)

π0 momentum (GeV)	0.05-0.2	0.05-0.2
signal mode	$B \rightarrow D^*\pi$	$B \rightarrow D^*\pi$
reference mode		(tag and probe)
output	$\epsilon_{data}/\epsilon_{MC}$	$\varepsilon_{\text{data}}, \varepsilon_{\text{MC}}, \varepsilon_{\text{data}}/\varepsilon_{\text{MC}}$
bin	single bin	momentum-theta
multiplicity	high	high
analyzer	Koga	Dey
status	accepted	writing B2N
precision	~5% (stat.)	~5%(stat.) not yet (?)

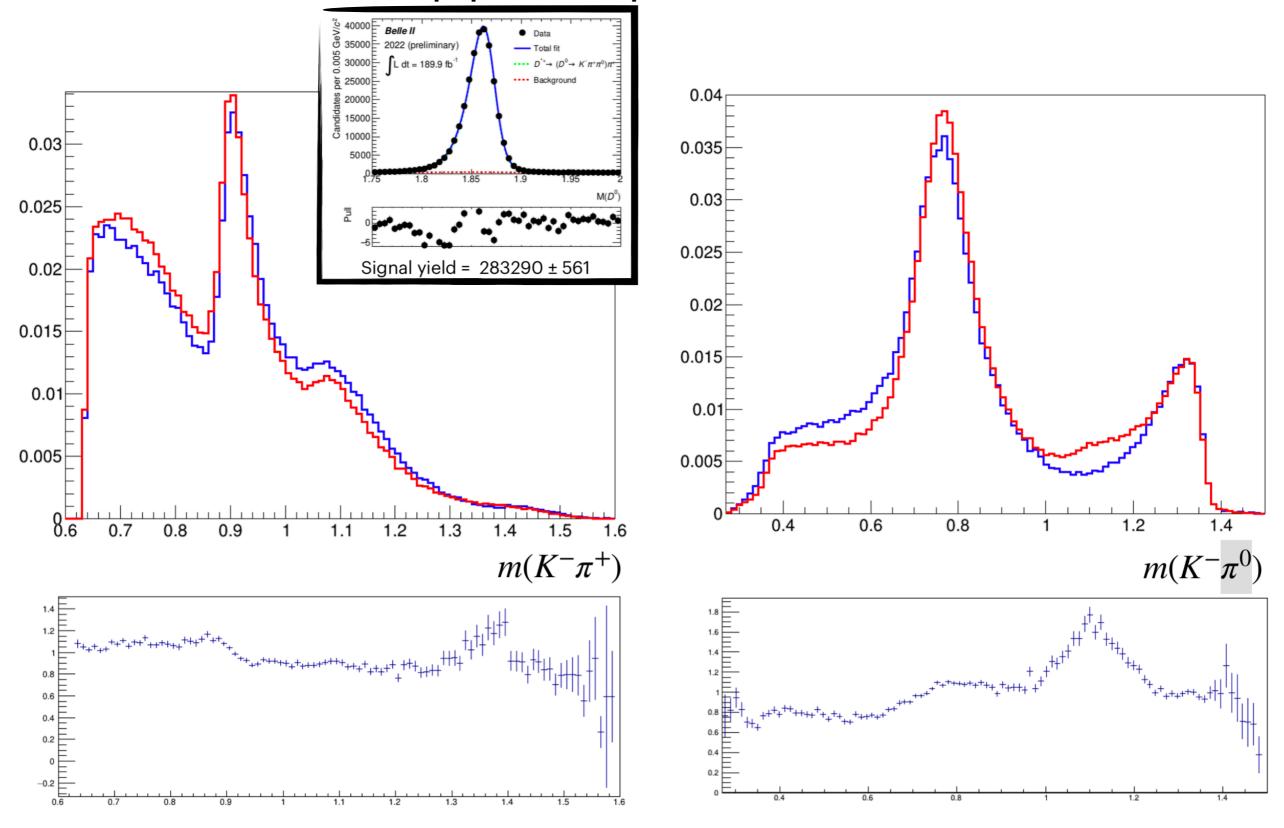
From last PGM (Koga-san)

Comparison of measurements


- -(Need to finalize all results with internal review for reliable comparison)
- -~2σ tension is seen at high momentum region
 - -We are discussing the reason but no conclusion yet.
 - -If your physics channel is useful to validate this difference, please let us know. You can test different corrections.

Issue with Kpipi0?

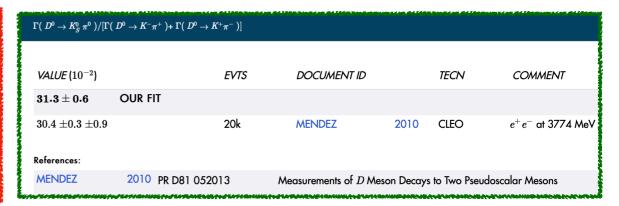
 D efficiency dominated by irreducible 3.6% uncertainty on BR(Kpipi0)/BR(Kpi). Tension due to a bias on the BR?
 If using only CLEO last result, the efficiency is ~4% lower...


VALUE		EVTS	DOCUMENT ID		TECN
$\textbf{3.65} \pm \textbf{0.13}$	OUR FIT Error includes scale	e factor of 2.1.			
$\textbf{3.76} \pm \textbf{0.10}$	OUR AVERAGE Error include	des scale factor of	1.4. See the ideogram	oelow.	
$3.802 \pm 0.022 \pm 0$.073		BONVICINI	2014	CLEO
$3.81 \pm 0.07 \pm 0.20$	3	10k	BARISH	1996	CLE2
$3.04 \pm 0.16 \pm 0.34$	1	931	¹ ALBRECHT	1992P	ARG
$2.8 \pm 0.14 \pm 0.52$		1050	KINOSHITA	1991	CLEO

- Another source of MC/data difference is Dalitz modelling:
 - how can we disentangle resonances mis-modelling and Dalitz-dependent pi0 efficiency?
 - pi0 momentum cut (bin) should sculpt the Dalitz plane

Dalitz Kpipi0 data/MC comparison

Clean Kpipi0 sample



Proposal

$$\varepsilon(\pi^{0}) = \frac{N(D^{0} \to K_{S}\pi^{0})}{N(D^{+} \to K_{S}\pi^{+})} \frac{N(D^{+} \to K^{-}\pi^{+}\pi^{+})}{N(D^{0} \to K^{-}\pi^{+})} \frac{\mathcal{B}(D^{+} \to K_{S}\pi^{+})}{\mathcal{B}(D^{+} \to K_{S}\pi^{+})} \frac{\mathcal{B}(D^{0} \to K^{-}\pi^{+})}{\mathcal{B}(D^{0} \to K_{S}\pi^{0})}$$

$$\frac{2.4\% + 1.9\% = 3.1\%}{2.4\% + 1.9\% = 3.1\%}$$

$\Gamma(~D^+ o K^0_S~\pi^+~)/\Gamma(~D^-$	$^{+} ightarrow \mathit{K}^{-}$ 2 π^{+})					
VALUE		EVTS	DOCUMENT ID		TECN	COMMENT
$\textbf{0.167} \pm \textbf{0.004}$	OUR FIT Error incl	udes scale factor	of 2.4.			
$\textbf{0.162} \pm \textbf{0.009}$	OUR AVERAGE E	rror includes scal	le factor of 4.5.			
$0.171 \pm 0.002 \pm 0.0$	02		BONVICINI	2014	CLEO	All CLEO-c runs
$0.1530 \pm 0.0023 \pm 0$.0016	10.6k	LINK	2002B	FOCS	γ nucleus, $\overline{E}_{\gamma}pprox$ 180 GeV

- Precision not sufficient for clarifying the tension, however two-body decay for pi0, no issue with Dalitz, better suited for studies in pi0 momentum and costheta.
- Can we tune Kpipi/Kpi kinematic to cancel pi+ efficiency on KSpi+ (check kinematic overlap)?
- Still might have an issue with BR(KSpi+)/BR(Kpipi)...