$B^0 ightarrow \pi^0 \pi^0$ update M. Dorigo, <u>S. Raiz</u>, D. Tonelli

Trieste

BtoHadrons meeting Nov 16, 2022

Overview

BF and A_{CP} of $B^0 \rightarrow \pi^0 \pi^0$ decays: important measurements unique to Belle II.

Status: 189.9 fb⁻¹ analysis by Francis shown at ICHEP2022 and targeting PRD submission soon.

Start from Francis analysis, and try to improve for full LS1 data update.

Last time: photonMVA, CSBDT, specific BDT against ho's

(https://indico.belle2.org/event/7786/contributions/45936/ attachments/18498/27519/B02pi0pi0_B2Hadrons_vF.pdf)

Today:

- open points from last time
- simplified fitter and CS selection optimisation
- 2D signal modelling

Samples and selections

Samples

GenericMC: MC15ri

SignalMC: MC15 locally produced (2000000 events)

Data: Proc13 chunk1+chunk2

Off-res data: Proc13 (c1+c2) +Prompt

For data use "all" (no hadron skim).

Base selections

 γ : E>0.03 GeV, |clusterTiming|<200, clusterNHits>1.5, 0.30<cluster θ <2.62 (very loose cuts)

π⁰: daughterAngle < 0.4,
|daughterDiffOfPhi| < 0.4,
|cosHelicityAngleMomentum| < 0.99,
p > 1.5 GeV/c, 0.115 < InvM < 0.150 GeV/c² (very loose cuts)

 B^0 : -0.3< ΔE <0.2 GeV, $M_{\rm bc}$ >5.26 GeV/c²

Open points from last time

- PhotonMVA: one input variable could have some data/MC discrepancies.
- CSBDT: explore other possible inputs of the BDT.
- Flavor tagger: check if inclusion of Δr and ΔZ in CSBDT sculpts the flavor tagger (change in the FT parameters).

Photon MVA

Open point from last time: photonMVA

Distinguish between signal photons and misreconstructed photons: beam backgrounds, energy releases from other particles...

Combine highly-discriminant cluster- and photon-variables in a MVA.

From Loot	
Inputs	time
pt	
clusterE1E9	
clusterErrorPhi	
clusterHighestE	
clusterSecondMoment	
clusterZernikeMVA	
minC2TDist	
clusterLAT	This is a
clusterNHits	
clusterTheta	PulseSh
beamBackgroundSuppression -	

This is a MVA that is well reproduced in MC, but its main inputs clusterTiming and PulseShapeDiscriminatorMVA are not.

Open point from last time: photonMVA

Distinguish between signal photons and misreconstructed photons: beam backgrounds, energy releases from other particles...

Combine highly-discriminant cluster- and photon-variables in a MVA.

Photon MVA comparison (after input exclusion)

Look at photons: reconstruct $B^0 \rightarrow \pi^0 \pi^0$ in genericMC and apply γ and π^0 selections. Consider as "signal" all real photons, and as "background" all misreconstructed photons. Use MC info to obtain photon signal efficiency and bkg rejection after photonMVA selection. For fixed ε_{sig} (=85%), compare bkg rejection.

Old bkg rejection: 68.5% — My bkg rejection: 84.8%

Look at B^0 **candidates**: reconstruct $B^0 \rightarrow \pi^0 \pi^0$ candidates in genericMC and apply γ and π^0 selections. Consider as "signal" all signal $B^0 \rightarrow \pi^0 \pi^0$ events, and everything else as "background". Use MC info to obtain signal efficiency and bkg rejection after photonMVA selection. For fixed ε_{sig} (=94.7%), compare bkg rejection.

Old bkg rejection: 15.6% — My bkg rejection: 16.1%

Check on data: reconstruct $D^{*+} \rightarrow D^0(K^-\pi^+\pi^0)\pi^+$ candidates in data and apply γ and π^0 selections. Reweigh using $p(\pi^0)$. Consider as "signal" all signal $D^{*+} \rightarrow D^0\pi^+$ events, and everything else as bkg. Obtain ε_{sig} and bkg rejection as $N_{pass}/(N_{pass} + N_{not pass})$ from fit. For fixed ε_{sig} (=96.6%), compare bkg rejection.

Old bkg rejection: $5.1\pm0.1\%$ — My bkg rejection: $9.1\pm0.1\%$

PhotonMVA: selection optimisation on MC

Use genericMC sample of $B^0 \to \pi^0 \pi^0$. Change selection on photonMVA and check $S/\sqrt{S+B}$ in signal region (-0.15< ΔE <0.1 GeV and $M_{\rm bc}$ >5.27 Gev/c²).

9

Open point: photonMVA

Distinguish between signal photons and misreconstructed photons: beam backgrounds, energy releases from other particles...

Combine highly-discriminant cluster- and photon-variables in a MVA.

New from last time

CSBDT

CSBDT: new possible inputs

Last time: shown CSBDT trained in data.

Today: explore new possible variables with high $B\bar{B}/q\bar{q}$ discriminating power.

SL FEI probability

1ROE high-energy tracksProbability to find a lepton is higher in
 $B\bar{B}$ than in $q\bar{q}$ (semileptonic decays).2ROE low-energy tracksProbability to find a soft pion is higher
in $B\bar{B}$ than in $q\bar{q}$ ($B \rightarrow D\pi$).

Low efficiency, but high discrimination.

ROE variables: energy, transverse momentum, PID

Performance with ROCs: MC only

Check performance using MC only:

High-energy tracks variables offer good discrimination.

Off-res data + SignalMC (PID corrected)

Check performance using signalMC (with corrected PID for high-energy kaons and pions; lepton corrections still not ready)+OffRes data:

Similar performance in data.

Off-res data + SignalMC (PID corrected)

Check performance using signalMC (with corrected PID for high-energy kaons and pions; lepton corrections still not ready)+OffRes data:

All performances are ~similar, take default+high-E tracks set of inputs.

Open point from last time: flavor tagger sculpting

I need the flavour tagger to distinguish B^0 and \overline{B}^0 .

My BDT includes B_{Tag} variables Δr and ΔZ (distance of vertex from IP). They also enter in the FT.

Check if these variables sculpt or introduce large correlations in flavour tagger.

SignalMC15, Flavor tagging parameters light-2210-devonrex

Check flavour tagger parameters obtained in $B^0 \rightarrow \pi^0 \pi^0$ before and after applying CSBDT selection.

$B^0 o \pi^0 \pi^0$ ju	ust afte	er recon	struction			
<i>r</i> - Interval	$arepsilon_i$	$\Delta arepsilon_i$	$w_i\pm\delta w_i$	$\Delta w_i \pm \delta \Delta w_i$	$arepsilon_{eff,i}\pm\deltaarepsilon_{eff,i}$	$\Delta arepsilon_{eff,i} \pm \delta \Delta arepsilon_{eff,i}$
0.000 - 0.100	15.7	-0.07	47.78 ± 0.12	-0.05 ± 0.24	0.0311 ± 0.0033	0.0012 ± 0.0066
0.100 - 0.250	15.2	-0.03	41.57 ± 0.12	1.45 ± 0.24	0.4305 ± 0.0122	-0.1488 ± 0.0249
0.250 - 0.500	20.0	-0.02	31.03 ± 0.10	-0.00 ± 0.19	2.8817 ± 0.0301	-0.0022 ± 0.0601
0.500 - 0.625	11.7	-0.04	21.86 ± 0.11	0.68 ± 0.23	3.7072 ± 0.0314	-0.1922 ± 0.0630
0.625 - 0.750	11.1	0.12	15.85 ± 0.10	-0.53 ± 0.21	5.1703 ± 0.0342	0.2178 ± 0.0682
0.750 - 0.875	9.2	0.24	9.59 ± 0.09	-0.17 ± 0.18	5.9779 ± 0.0324	0.2058 ± 0.0647
0.875 - 1.000	17.1	-0.20	2.05 ± 0.03	0.12 ± 0.06	15.7690 ± 0.0389	-0.2642 ± 0.0778
Total			$arepsilon_{eff} = 1$	$\sum_i arepsilon_i \cdot \langle 1 - 2w_i angle^2$	$= 33.97 \pm 0.08 \Delta \varepsilon$	$_{eff} = -0.18 \pm 0.15$

$B^0 \rightarrow \pi^0 \pi^0$ after CS selection (>0.7)

<i>r</i> - Interval	$arepsilon_i$	$\Delta arepsilon_i$	$w_i\pm\delta w_i$	$\Delta w_i \pm \delta \Delta w_i$	$arepsilon_{eff,i}\pm\deltaarepsilon_{eff,i}$	$\Delta arepsilon_{eff,i} \pm \delta \Delta arepsilon_{eff,i}$
0.000 - 0.100	15.2	-0.06	47.73 ± 0.15	0.33 ± 0.29	0.0314 ± 0.0041	-0.0093 ± 0.0083
0.100 - 0.250	14.6	-0.09	41.67 ± 0.15	1.53 ± 0.30	0.4039 ± 0.0144	-0.1514 ± 0.0295
0.250 - 0.500	19.6	-0.08	30.99 ± 0.12	-0.23 ± 0.24	2.8284 ± 0.0363	0.0576 ± 0.0726
0.500 - 0.625	11.7	0.01	21.89 ± 0.14	0.61 ± 0.28	3.7100 ± 0.0384	-0.1566 ± 0.0769
0.625 - 0.750	11.1	0.08	15.86 ± 0.13	-0.35 ± 0.25	5.1805 ± 0.0418	0.1454 ± 0.0834
0.750 - 0.875	9.3	0.24	9.58 ± 0.11	0.00 ± 0.22	6.0653 ± 0.0398	0.1544 ± 0.0795
0.875 - 1.000	18.5	-0.10	1.97 ± 0.04	0.07 ± 0.07	17.1132 ± 0.0489	-0.1375 ± 0.0978
Total			$\varepsilon_{eff} =$	$\sum_i \varepsilon_i \cdot \langle 1 - 2w_i \rangle^2$	$= 35.33 \pm 0.09 \Delta \varepsilon$	$_{eff} = -0.10 \pm 0.19$

Tagging efficiency is higher, as expected.

Wrong-tags and asymmetries are compatible \rightarrow no CS visible effect on FlavorTagger. ₁₇

Flavor tagging parameters | ligh

New from last time Check flavour tagger parameters obtained in $B^0 \rightarrow \pi^0 \pi^0$ after applying CSBDT selection and in $B^0 \to D^-(K^+\pi^-\pi^-)\pi^+$ (calibration channel with largest BF).

$B^0 \rightarrow \pi^0 \pi^0$ after CS selection (>0.7)						
<i>r</i> - Interval	$arepsilon_i$	$\Delta arepsilon_i$	$w_i\pm\delta w_i$	$\Delta w_i \pm \delta \Delta w_i$	$arepsilon_{eff,i}\pm\deltaarepsilon_{eff,i}$	$\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$
0.000 - 0.100	15.2	-0.06	47.73 ± 0.15	0.33 ± 0.29	0.0314 ± 0.0041	-0.0093 ± 0.0083
0.100 - 0.250	14.6	-0.09	41.67 ± 0.15	1.53 ± 0.30	0.4039 ± 0.0144	-0.1514 ± 0.0295
0.250 - 0.500	19.6	-0.08	30.99 ± 0.12	-0.23 ± 0.24	2.8284 ± 0.0363	0.0576 ± 0.0726
0.500 - 0.625	11.7	0.01	21.89 ± 0.14	0.61 ± 0.28	3.7100 ± 0.0384	-0.1566 ± 0.0769
0.625 - 0.750	11.1	0.08	15.86 ± 0.13	-0.35 ± 0.25	5.1805 ± 0.0418	0.1454 ± 0.0834
0.750 - 0.875	9.3	0.24	9.58 ± 0.11	0.00 ± 0.22	6.0653 ± 0.0398	0.1544 ± 0.0795
0.875 - 1.000	18.5	-0.10	1.97 ± 0.04	0.07 ± 0.07	17.1132 ± 0.0489	-0.1375 ± 0.0978
Total			$arepsilon_{eff} = 2$	$\sum_i arepsilon_i \cdot \langle 1 - 2w_i angle^2$	$=35.33\pm0.09$ $\Delta\varepsilon_{\rm c}$	$_{eff} = -0.10 \pm 0.19$

D		<u> </u>	1 77	L _		
B°	\rightarrow	D^{-}	(<i>K</i> ¬	π^{-}	π^{-}	$)\pi^{T}$
	1		(

<i>r</i> - Interval	$arepsilon_i$	$\Delta arepsilon_i$	$w_i\pm\delta w_i$	$\Delta w_i \pm \delta \Delta w_i$	$arepsilon_{eff,i} \pm \delta arepsilon_{eff,i}$	$\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$
0.000 - 0.100	16.3	0.03	47.39 ± 0.20	-0.43 ± 0.40	0.0445 ± 0.0068	0.0147 ± 0.0137
0.100 - 0.250	15.4	-0.10	41.12 ± 0.20	1.61 ± 0.40	0.4847 ± 0.0222	-0.1792 ± 0.0445
0.250 - 0.500	20.1	-0.01	31.43 ± 0.17	-0.79 ± 0.33	2.7781 ± 0.0507	0.2355 ± 0.1015
0.500 - 0.625	11.8	-0.09	21.36 ± 0.19	0.17 ± 0.38	3.8735 ± 0.0548	-0.0758 ± 0.1096
0.625 - 0.750	11.2	0.04	15.27 ± 0.17	-0.91 ± 0.35	5.4134 ± 0.0593	0.3001 ± 0.1187
0.750 - 0.875	9.2	0.36	9.04 ± 0.15	-0.95 ± 0.31	6.1702 ± 0.0556	0.5257 ± 0.1112
0.875 - 1.000	15.9	-0.23	2.03 ± 0.06	0.05 ± 0.11	14.6735 ± 0.0646	-0.2415 ± 0.1291
Total			$arepsilon_{eff}$ =	$=\sum_{i}\varepsilon_{i}\cdot\langle 1-2w_{i}\rangle$	$\rangle^2 = 33.44 \pm 0.13$ \triangle	$\varepsilon_{eff} = 0.58 \pm 0.26$

Tagging efficiency is higher, as expected.

Wrong-tags and asymmetries are compatible \rightarrow no CS visible effect on FlavorTagger. ₁₈

NB: $B^0 \rightarrow \pi^0 \pi^0$ sample has 2M generated events. Flavor tagging parameters ligh last time

Plot wrong tags and $\Delta \varepsilon_{eff}$ in $B^0 \to \pi^0 \pi^0$ for various CS selections.

NB: $B^0 \rightarrow \pi^0 \pi^0$ sample has 2M generated events. Flavor tagging parameters ligh last time

Plot wrong tags and $\Delta\varepsilon_{e\!f\!f}$ in $B^0\to\pi^0\pi^0$ for various CS selections.

Flavor tagging parameters Iigh last time

Systematic will be ~1%. What about removing flavour tagger variables? How much do we lose in sensitivity?

1.1% loss in AUC if FT variables are removed

At the current precision, using Δr and ΔZ as inputs does not bias the result after CS selection.

Optimise CS selection by minimising *BF* uncertainty.

 \rightarrow Need a fitter

qr-integrated fit of MC sample

Simplified version of the fit: pdf is factorised, no flavor tagger.

Fit realistic $B^0 \rightarrow \pi^0 \pi^0$ sample of 365 fb⁻¹ (qr-integrated) with CS>0.6:

- Non-extended, unbinned ML fit. Components: signal, $B\overline{B}$, continuum.
- Fix all parameters from MC. Only free parameters are BF and $Bar{B}$ yield.

Fit projections

Check pulls

Generate 1000 toys from pdfs and fit them to search for possible biases:

Toys drawn from pdf look fine.

CS selection optimisation

Vary CS selection and minimise *BF* uncertainty. Generate and fit 1000 toys (from pdf) for each one, and compare σ_{BF} and significance.

New from last time Selection optimisation using $B^+ \to K^+ \pi^0$ **PhotonMVA** - Optimise photonMVA selection on data. (wait for the photon energy corrections) CSBDT - Optimise CS selection on MC. - If results are similar to what I obtain in $B^0 \to \pi^0 \pi^0$ MC: optimise CS selection of $B^0 \to \pi^0 \pi^0$ channel using $B^+ \to K^+ \pi^0$ data.

Now I'm reconstructing $B^+ \to K^+ \pi^0$ in MC, then I'll pass to data

From factorised pdfs to 2D signal modelling

Signal dependencies: $\Delta E - M_{\rm bc}$

Plot ΔE in slices of $M_{\rm bc}$ in realistic signalMC (@CS>0.7):

Large $\Delta E - M_{\rm bc}$ dependence.

Signal dependencies: ΔE vs CS, $M_{\rm bc}$ vs CS

No dependencies in ΔE vs CS or $M_{\rm hc}$ vs CS.

Conditional $\Delta E - M_{\rm bc}$ function

Write 2D conditional signal function $f(\Delta E \mid M_{bc})$: different ΔE model for each M_{bc} bin.

Projections look good.

Fit to 365fb⁻¹ MC sample using 2D signal model

pdf =

Check pulls using 2D signal model

Generate 1000 toys from pdfs and fit them:

Pulls look fine.

Next step: pass from ideal toys drawn from pdf to realistic toys (bootstrapped from MC — must pay attention to bootstrap bias).

Summary

Goal: LS1 update of $B^0 \rightarrow \pi^0 \pi^0$ analysis.

Today:

- closed open points from last time: final set of photonMVA inputs, selection optimisation on MC, final set of CSBDT inputs, check on flavor tagger parameters;

- simplified fitter (factorised likelihood, no flavor tagger) and CS selection optimisation (for *BF* measurement);

- 2D signal model using conditional function.

Next steps:

- optimise photonMVA selection on data;
- finalise CS optimisation on data control sample;
- check pulls on realistic toys (consider dependences between variables).

Backup

Photon-energy corrections

Check $B^0 \to D^0(K^-\pi^+\pi^0)\pi^0$ before/after corrections wrt MC.

Statistics is still too small. Large shift seems to be present (maybe data $B\bar{B}$ goes out of the range?)

New from last time

Photon-energy corrections

Check $B^0 \to D^0(K^-\pi^+\pi^0)\pi^0$ before/after corrections wrt MC.

Statistics is still too small. Large shift seems to be present. When all payloads will be ready (all-in-one) repeat with full stats.

New from last time

Others

Yesterday: started working with Benigno on fitter generalisation (n-bins). Seems feasible in short time.

Using different functions for each bin is more tricky and requires more time (but in case there's an "ugly" shortcut).

Topoana

I tried using Topoana on $B\overline{B}$ to check if there's something useful (after CS>0.7). Also, modelling $B\overline{B}$ using the peaking bkg tool could be part of its validation.

Francis approximation (use $B^+ \to \pi^0 \rho^+$ and $B^0 \to K_S^0 \pi^0$ only) seems not valid.

New from last time

Topoana

I tried using Topoana on $B\overline{B}$ to check if there's something useful (after CS>0.7). Also, modelling $B\overline{B}$ using the peaking bkg tool could be part of its validation.

 $B\bar{B}$ composition in genericMC (sum of B and \bar{B})

 $\begin{array}{l} B^+ \to \pi^0 \rho^+ \\ B^+ \to others \; (\ < 15 \; {\rm each}) \; ({\rm hundreds \, of \, decays}) \\ B^0 \to others \; (\ < 15 \; {\rm each}) \; ({\rm hundreds \, of \, decays}) \\ B^+ \to e^+ \nu_e \bar{D}^{*0} \\ B^+ \to \pi^0 \rho^+ \gamma \\ B^0 \to \pi^0 \pi^0 \\ B^+ \to \mu^+ \nu_\mu \bar{D}^{*0} \\ B^0 \to K^0_S \pi^0 \\ B^+ \to e^+ \nu_e \bar{D}^0 \end{array}$

Francis approximation (use $B^+ \to \pi^0 \rho^+$ and $B^0 \to K_S^0 \pi^0$ only) seems not valid. Model $B\bar{B}$ using genericMC (no peaking bkg tool). Too many single decays

New from last time

CSBDT: K-fold validation

Go back to default CSBDT, and use all off-res data (possible final configuration). Perform k-fold cross evaluation.

BBbar composition for modelling

BBbar composition (CS>0.7):

deltaE