

MPGD-based PDs with nanodiamond photocathodes: A Trieste-Bari-CERN effort

ALDO MORC

Chandradoy Chatterjee

On behalf of the nanodiamond-THGEM group

H-ND: production and spray coating Photoemission measurements THGEMs with nanodiamond coating Measurements in different gas mixtures

COMPASS Hybrid THGEM+MM PDs

Rich-graphite Nano-Diamond film

CsI bandgap: 6.2 eV; electron affinity: 0.1 eV; hygroscopic; ages by ion bombardment (~mC/cm²)

Diamond bandgap: 5.5 eV; chemically inert and robust; if hydrogenated: electron affinity -1.27 eV

Hydrogenated chemical vapor deposited diamond films (4-6 µm) known to have QE ~15% @ 140 nm.

Heterogranular-structured diamond-gold nanohybrids proposed as stable field emission cathode material

Nano-Diamond grains (size: ~250 nm), with variable sp² (graphite phase) and sp³ (diamond phase) hybridized carbon contents treated in H2 microwave plasma show large QE: >40% @ 140 nm

Photocatodes: diamond film obtained with Spray Technique Spray technique: T ~ 120° (instead of ~800° as in standard techniques)

Rich-graphite ND Rich-diamond ND **0E (%)** Quantum Efficiency, (b) 220 140 160 180 160 180 220 Wavelength (nm)

L. Velardi, A. Valentini, G. Cicala, Diamond & Related Materials 76 (2017) 1

Schematic representation of the process of photoemission components sp³ e sp² for PEA (a) and for NEA (b)

47 %

Hydrogenation: MWPECVD setup in Bari

Hydrogenation details: Vacuum: ~6.5x10⁻⁶ mbar. 70 mm between H₂ source and ND powder. H₂ gas generated by electrolysis from distilled water. H₂ gas flow rate

controlled to 200 sccm.

Hydrogenation of ND powder: 1 hour at 43 mbar.

1380 W microwave power → 1000 °C temperature with 830 °C substrate holder temperature.

1250 W microwave power → 810 °C temperature with 650 °C substrate holder temperature.

Pulsed spray coating and thickness studies in Bari

-<u>Low Temperature</u> <u>Deposition (≤120 °C)</u>

- Good reproducibility technique
- Scalable to cover large areas

Sufficient surface coverage is reached with "100 shots" thickness

Measurement setup in Bari and QE of different ND and HNDs

OLD ND, H-ND [D&T]- 2019

New H-ND [D&T, E6, and BDD]- 2021

Photocurrent studies Ar/CH₄ gases

Gap between substrate and electric wire: 4.4 mm. Scan performed with MgF2 window in vacuum and various Ar:CH₄ gas mixtures

λ = 162 nm H-ND D&T

Substrate holder for photocurrent measurement

Photocurrent vs E in Ar/CH₄ gases

PDE of H-ND D&T: Vac and gas mixtures

QE CsI/QE HND ~10 What about aging?

ASSET at CERN RD51 Lab

Aging tests performed thanks to the possibility to irradiate the sample inside the setup

First aging measurements

Aged Q.E./Original Q.E. [H-ND, 50 shots, 160 nm]

preliminary indication:

H-ND is at least ten times more robust than CsI against irradiation and ion bambardment

THGEMs + H-ND

First trial of THGEM + H-ND not successful: coated THGEMs lost electrical strength.

THGEMS H-ND

First results were puzzling:

J. Agarwala, et al. Nuclear Inst. and Methods in Physics Research, A 952 (2020) 161967

Systematic studies: 15 THGEM samples characterized

Figure 4: Gain behavior of THGEM with $20 \mu m$ rim, half-coated with nanodiamond. It is clearly shown that the gain in the coated part is almost two times higher than that in the the uncoated part.

THGEM characterization

Full characterization including charging up measurements before and after H-ND coating

Voltage Applied:

Drift = 2250 V T_top = 1750 V T_bot = 500 V Anode = 0 V

Gas Mixture:

Ar = 70 % CO2 = 30 % @ 10 l/h flow rate

X-ray Source:

Fe-55

THGEM active area:

30 mm x 30 mm

Electronics used:

CAEN N1471H HV PS CREMAT CR-110 Pre Amp ORTEC 672 Amp CREMAT CR-150 Eva Board AMPTEK MCA 8000A

THGEMs are H-ND compatible

The response of THGEMs as electron multipliers is unaffected by H-ND coating

Surface morphology scan in Elletra Trieste

SEM/STEM setup @ IOM-CNR, Elletra

Preliminary observations:

- Facet like morphology is observed for all types of NDs & H-NDs
- Nanoparticle size is varying from 10 nm to 500 nm
- D&T and E6 grain sizes varying from 10 nm to ~ 200 nm.
- BDD NDs & H-NDs having large particle size
- NDs particles are having higher grain size compared to H-NDs particles
- Grain distribution are non uniform
- Non-hydrogenated grains found are in clusters, while, H-ND are scattered and dispersed

Detailed Analysis Ongoing

CONCLUSIONS

- Exploratory investigation on H-ND photocathodes
 - Promising values of Q.E. in the far UV but no clear reproducibility.
 - High robustness against moisture, light irradiation, ion bombardment
 - Surface morphology scans → Preliminary findings are interesting. Detailed analysis ongoing
- Perspective of coupling H-ND with THGEM-based PDs
 - Full compatibility (same electron multiplication response if correctly coated)
 - Systematic study for gas, HV config. and detector geometry started
- Potentially interesting for windowless gaseous PDs, Picosec, fire detection, ...

Basic questions about H-ND and TGEM coupling

Is the H-ND layer on the THGEM:

- Reducing the electrical stability?
- Changing the gain response?
- Providing the same PDE as on PCBs?
- Uniform and stable?
- More robust with respect to CsI?

Q.E. measurement setup in Bari

Hydrogenated Nano-Diamond

Schematic representation of the process of photoemission components sp³ e sp² for PEA (a) and for NEA (b)

