PMT @ LNGS

Francesco Borra

Discriminating Fe signals

Quasi-equalized PMTs, tensions at: (813, 836, 774, 770) V.

Runs:

- 4210 4218 **Fe**
- 4304 4308 **no Fe**.

Selection on signal:

- V th = 30 mV
- length th = 15 samples (1 sample ≃ 1.33 ns).

Discriminating Fe signals

Calculating waveforms integrals:

- selected waveforms
- Integrating on the peak
- Charge collected = integral/50Ohm

The selection was the same for runs with and without the Fe source.

PMT light collection

h: distance from the GEM plane r: sensor radius

PMT light collection

h: distance from the GEM plane r: sensor radius

Measure: L_1, L_2, L_3, L_4

Infer: L_{spot}, X, Y

Fit implementation

Using the charge collected by the PMTs is possible to reconstruct the position in the GEM plane and the light emitted by the spots.

For testing we simulated spots in the GEM plane, calculated the charge collected by the 4 pmts, reconstructed the positions and **then compared with the 'real' ones**.

Fitting PMTs calibration const

Using L_1 , L_2 , L_3 , L_4 is it possible to reconstruct the x-y position and the gain of each PMT.

Strict selection on the waveforms to take possibly only Fe spots.

4 spots for each fit. L_{spot} considered uniform for every spot.

The fitted parameters are:

-	(X,	y) _i	=	1-4
---	-----	-----------------	---	-----

- C₁, C₃, C₃, C₄.

$$\frac{c1}{c1} = 1,$$

$$\frac{c2}{c1} = 1.22,$$

$$\frac{c3}{c1} = 0.529,$$

$$\frac{c4}{c1} = 0.672$$

Same fit, new data with 'new equalization'

Setting the PMT in the **new 'equalized'** workpoint: (803, 803, 833, 800) V

Taking **new data** to check if the fit is consistent.

Fitting again:

- $(x, y)_{i=1-4}$ C_1, C_3, C_3, C_4

$$\frac{c1}{c1} = 1, \qquad \frac{c3}{c1} = 0.968,$$
$$\frac{c2}{c1} = 0.975, \qquad \frac{c4}{c1} = 0.935$$

Reconstruction

Fixed calibration constant, fitting a **single spot**, parameters:

- x, y;

- L.

The dataset used for this reconstruction was, on purpose, **loosely selected**, to ensure that the BKG data was enough.

In the picture is evident that some points are badly reconstructed \rightarrow **working on it**

Fitted L histogram

Reconstructed Fe light

Conclusions

 Calibration of PMTs with the fit seems working → need more analysis with the new calibration

- L reconstructed has a great resolution (11%)

(x,y) position problems to be fully understood (the geometry has various symmetries)

Next step will be matching pmt-reco position with camera-reco position