Measurements of hadronic interactions enter a new era

Otón Vázquez Doce, (ex) Fellini fellow at LNF -INFN Supervisors: Alessandra Fantoni, ALICE Catalina Curceanu, SIDDHARTA-2.

Fellini Seminar, December 13th, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754496

Hadron-hadron strong interactions (with strangeness)

Running coupling constant defines the boundaries of "Low energy QCD" $- Q \sim 1 \text{ GeV}, R \sim 1 \text{ fm}$

- Perturbative methods not applicable

Residual strong interaction among hadrons

Residual strong interaction among hadrons

 $\mathcal{L}_{EFT}[\pi, N, \ldots; m_{\pi}, m_N, \ldots, C_i]$

Effective theories (EFT)

- Hadrons as degrees of freedom
- Low-energy EFT coefficients constraint by data

Parameter fixing by chiral SU(3) dynamical approaches for antiK-N interaction

- Going to NLO (N²LO?), s+p waves \Rightarrow more parameters to be fixed (by data)

$$\begin{array}{ll} \text{Next to leading order (NLO), just considering the contact term}} \\ \mathcal{L}_{\phi B}^{(2)} &= b_D \langle \bar{B}\{\chi_+, B\} \rangle + b_F \langle \bar{B}[\chi_+, B] \rangle + b_0 \langle \bar{B}B \rangle \langle \chi_+ \rangle + d_1 \langle \bar{B}\{u_\mu, [u^\mu, B]\} \rangle \\ &+ d_2 \langle \bar{B}[u_\mu, [u^\mu, B]] \rangle + d_3 \langle \bar{B}u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B}B \rangle \langle u^\mu u_\mu \rangle \\ &- \frac{g_1}{8M_N^2} \langle \bar{B}\{u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]\} \rangle - \frac{g_2}{8M_N^2} \langle \bar{B}[u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]] \rangle \\ &- \frac{g_3}{8M_N^2} \langle \bar{B}u_\mu \rangle \langle [u_\nu, \{D^\mu, D^\nu\}B] \rangle - \frac{g_4}{8M_N^2} \langle \bar{B}\{D^\mu, D^\nu\}B \rangle \langle u_\mu u_\nu \rangle \\ &- \frac{h_1}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu] Bu_\mu u_\nu \rangle - \frac{h_2}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu] u_\mu [u_\nu, B] \rangle - \frac{h_3}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu] u_\mu \{u_\nu, B\} \rangle \\ &- \frac{h_4}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu] u_\mu \rangle \langle u_\nu, B \rangle + h.c. \end{array}$$

• $b_0, b_D, b_F, d_1, d_2, d_3, d_4, g_1, g_2, g_4, h_1, h_2, h_3, h_4$ are not well established, so they should be treated as parameters of the model!

6

(with strangeness)

S=0 S=-1 S=-2 $NN \rightarrow NN$ $\Lambda p \rightarrow \Lambda p$ **Kaonic atoms** $\Lambda\Lambda$, Ξ hypernuclei 15 300 x10² 1.5 1.5 1.0 (a) K-p Ka EM value 10 ${}^{3}P_{0}$ Sechi-Zorn et al. o Kadyk et al. Alexander et al. 200 ----- Argonne v,8 np (qm) --- Argonne v18 pp -5 ----- Argonne v., nn Bugg-Bryan np 92 b Nijmegen np 93 -10 õ Nijmegen pp 93 10 1 1 Energy [keV] 7 ♦ Henneck np 93 100 + VPI&SU np 94 -15 TI K_α TI K_β YG 12 <-C 7→5 6→5 5→4 £ 9 × VPI&SU pp 94 ė Ň ò K-N 6 Cu ç 0.2 ACO ACO 10 µm -20 0 100 200 300 400 E (MeV) SIDDHARTA Coll. Phys.Lett.B 704 (2011) 113 R. B. Wiringa, V. G. J. Stoks, R. Schiavilla Phys. Rev. C 51, 38 (1995) 100 200 300 400 500 600 700 800 900 p_{lab} (MeV/c) KISO event: K. Nakazawa et al., Prog. Theor. Exp. Phys. 2015, 033D02 IBUKI event J-PARC E07 Coll., Phys. Rev. Lett. 126, 062501 (2021) LO: H. Polinder, J. Haidenbauer, U. Meißner, Nucl. Phys. A779 (2006) 244.

NLO: J. Haidenbauer et al., Nucl. Phys. A915 (2013) 24.

7

Otón Vázgu

Experimental data

S(deg)

Residual strong interaction among hadrons

 $\mathcal{L}_{QCD}[q,\overline{q},A;m_q,\alpha_s]$

Lattice QCD

- Understanding of the interaction starting from **quark and gluons**

Residual strong interaction among hadrons

 $\mathcal{L}_{EFT}[\pi, N, \ldots; m_{\pi}, m_N, \ldots, C_i]$

 $\mathcal{L}_{QCD}[q,\overline{q},A;m_q,\alpha_s]$

Lattice QCD

- Understanding of the interaction starting from **quark and gluons**

(with strangeness)

10

Otón Vázqu

(with strangeness)

Otón Vázgu

(with strangeness)

Otón Vázgu

Femtoscopy

13

Femtoscopy method in nuclear collisions

Method defined by HBT interferometry

- based in the measurement of the correlation function C(d)

$$\vec{l}$$
) = $\frac{\langle I_1 I_2 \rangle}{\langle I_1 \rangle \langle I_2 \rangle}$

Femtoscopy method in nuclear collisions

⇒ Application to Heavy Ion Collisions

Measurement of the particle source

based on the <u>correlation function</u>
<u>of two particles emitted in the collision</u>

$$C(\overrightarrow{p_a}, \overrightarrow{p_b}) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$$

⇒ Application to Small Systems

Experimental correlation function

Experimentally:

 $C(k^*) = \xi(k^*) \otimes \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$ Pairs of particles from same collision Particles produced in different collisions

Experimental correlation function

Experimentally:

 $C(k^*) = \xi(k^*) \otimes \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} \xrightarrow{\text{Pairs of particles from same collision}} \text{Particles produced in different collisions}$

Corrections to the experimental measurement:

- Normalization
- Resolution effects
- Residual correlations

17

$$C(k^*) = \int S(r^*) \left| \Psi(k^*, \overrightarrow{r^*}) \right|^2 d^3r^*$$

20

21

Otón Vázguez Doce

Femtoscopy method in small systems

<u>"Traditional" femtoscopy</u> analyses in Heavy Ions Collisions:

Study pairs of particles with "known" interaction

 \Rightarrow Determine the characteristics of the source (sizes 3-10 fm)

"Non-traditional" femtoscopy

⇒ Study the interaction given a known source Applied to small collision systems ~1fm

Femtoscopy in small systems with ALICE

Femtoscopy at the LHC with ALICE

LHC

Small collision systems: - pp $\sqrt{s} = 13$ TeV

> ⇒ size of particle source ~1 fm

Femtoscopy at the LHC with ALICE

ALICE

Central barrel tracking and PID:

- Reconstruction of charged particles: p, π , K.
- Hyperon reconstruction through weak decays $\Lambda \rightarrow p\pi$, $\Xi \rightarrow \Lambda \pi$, $\Omega \rightarrow \Lambda K$

ALICE in Run 1 & 2

ALICE High-Multiplicity pp data

Data sample: - pp 13 TeV (1000 M high multiplicity events)

Tracking and PID:

- Hyperon reconstruction with purities >95%

⇒ Enhanced strangeness production!

Nature Physics volume 13, 535-539(2017)

Otón Vázquez Doce

1st step: Setting the source

<u>Ansatz</u>: similar source for all baryon-baryon (hadron-hadron?) pairs in small collision systems

<u>The first step is "traditional" femtoscopy:</u> known interaction \rightarrow determine source size

• p-p interaction: Argonne v18 potential

<u>Ansatz</u>: similar source for all baryon-baryon (hadron-hadron?) pairs in small collision systems <u>The first step is "traditional" femtoscopy</u>: known interaction \rightarrow determine source size

• p-p interaction: Argonne v18 potential

⇒ Fit of the radius of the source of p-p pairs in p-p collisions.

The source size (gaussian width) here is the only fit parameter

<u>Ansatz</u>: similar source for all baryon-baryon pairs in small collision systems

<u>The first step is "traditional" femtoscopy:</u> known interaction \rightarrow determine source size

 \sum

• p-p interaction: Argonne v18 potential

Determine gaussian "core" radius as a function of pair $\langle m_T \rangle$

- Common to all hadron-hadron pairs

Effect of strong short-lived resonances Adds exponential tail to the source profile

 \rightarrow Angular distributions from EPOS

Input:

→ Production fraction/lifetimes (Statistical Hadronization Model) F. Becattini and G. Passaleva Eur.Phys.J.C 23 (2002) 551-583

→ Angular distributions (EPOS event generator) T. Pierog et al.m PRC 92 (2015) 3, 034906

33

34

Dependence of the source size with $\langle m_T \rangle$ related to collective phenomena

"HIC"-like features being observed now in small systems:

- strangeness enhancement
- collective flow
Ist step: Setting the source ALICE Coll., Phys. Lett. B 811 (2020) 135849

Source size determined given the pair $< m_T >$ and considering the effect of strong resonances for the particles of the pair of interest

Example:

$$p-\Xi^{-}$$
: < m_T > = 1.9 GeV/c ⇒ r_{core} = 0.92 ± 0.05 fm
strong resonances
effect
⇒ r_{r} = 1.02 ± 0.05 fm

gauss

Femtoscopy for hadron-hadron interactions: What can we do this tool?

Precise data in the low momentum range to hadron-hadron interaction with unprecedented precision

Test of first principle calculations (and other models) and...

- Study coupled-channel systems
- Equation of State of neutron stars
- Search for new bound states beyond the deuteron

Coupled-channels: p–Λ correlation function *s*=-1

ALICE Coll. Phys.Lett.B 833 (2022) 137272

Coupled-channels: p–Λ correlation function **s**=-1

Coupled-channels: p–Λ correlation function **s**=-1

ALICE Coll. Phys.Lett.B 833 (2022) 137272

- Most precise measurements on the $p-\Lambda$ interaction
- Test strengths of the $N\Sigma \leftrightarrow N\Lambda$ transition
- Hyperons in NS?: Exact composition strongly depends on constituent interactions and couplings

Theory: Haidenbauer et al., Eur. Phys. J. A 56 (2020) 91

<u>Hyperons in NS</u>: $p-\Xi^{-}$ correlation function s=-2

Enhancement above Coulomb-only prediction ⇒ Observation of the **attractive strong interaction**

<u>Hyperons in NS</u>: $p-\Xi^{-}$ correlation function S=-2

Enhancement above Coulomb-only prediction ⇒ Observation of the **attractive strong interaction**

Theory: HAL QCD Coll., Nucl. Phys. A 998, 121737 (2020).

Excellent agreement with lattice predictions ⇒ Effect of validated Lattice QCD pΞ interaction for the Equation of State of Neutron Stars

EoS of dense symmetric nuclear matter

W. Weise @ HYP 2022

Tolman - Oppenheimer - Volkov Equations $G (\mathcal{E} + P)(M + 4\pi Pr^3)$ $\overline{c^2} - r(r - 2GM/c^2)$ $\frac{dM}{dr} = 4\pi r^2 \frac{\mathcal{E}}{c^2}$ Stiff equation-of-state $\mathbf{P}(\mathcal{E})$ required Simple forms of exotic matter (kaon condensate, quark matter, ...)

ruled out

D. Logoteta @ EXOTICO 2022

GWs spectrum with hyperons and without

D. Radice et al. ApJL 842 L10 (2017)

ヘロン 人間 とく 聞 とく 聞 と

Equation of state for neutron stars and binary neutron star mergers Domenico Logoteta

A new era of hadron-hadron interaction measurements

Otón Vázguez Doce

8

 \mathbf{M}

 $\overline{\mathbf{M}_{\odot}}$

Hyperons in NS

Lattice: slightly repulsive single particle potential in PNM for Ξ

- $\Rightarrow \Xi$ appears at larger densities in NS
- \Rightarrow Stiffer EoS

Otón Vázquez Doce

45

Constraints from NICER G. Raaijmakers et al., AJL 918 (2021), L29

A new era of hadron-hadron interaction measurements

Di-baryon states: $p-\Omega^-$ correlation function s=-3

T. Iritani et al. (HAL QCD Coll.) Phys. Lett. B792 (2019) 284

Interaction of $p-\Omega^-$ pairs in 5S_2 state by HAL QCD **Predicts the formation of a** $p-\Omega^-$ **di-baryon** \Rightarrow Binding Energy = 2.5 MeV

Meson exchange models predict smaller binding T. Sekihara et al., Phys. Rev. C 98, 015205 (2018)

Di-baryon states: $p-\Omega^-$ correlation function s=-3

ALICE Coll. Nature 588, 232 (2020)

High-energy physics Proton collisions probe nuclear force for exotic particles

- Data more precise than lattice calculations
 - \Rightarrow First constraints in the S=-3 sector
- So far, **no indication of a bound state** No visible depletion of C(k*)
- Uncertainty of calculations dominated by inelastic channels

Otón Vázguez Doce

Study of the antiKaon-deuteron interaction

antiKaonic atoms spectroscopy

- SIDDHARTA-2
- DAΦNE e⁺e⁻ collider
- Low energy kaons facility

Femtoscopy: two body correlations

- ALICE
- LHC
- Hadronic collisions

Study of the antiKaon-deuteron interaction

- KbarN interaction: building block of non-perturbative regime of QCD
- KN and KbarN strong interactions are very different
 - The presence of the strange quark has dramatic consequences
 - Strong attractiveness in KbarN gives rise to bound states
- Sub-threshold: Λ(1405) is an "old object" not fitting in the standard 3-quark picture
 - Molecular state with two poles KbarN- $\Sigma\pi$
 - Strong coupled channel dynamics

- KbarN interaction: building block of non-perturbative regime of QCD
- KN and KbarN strong interactions are very different
 - The presence of the strange quark has dramatic consequences
 - Strong attractiveness in KbarN gives rise to bound states
- Sub-threshold: Λ(1405) is an "old object" not fitting in the standard 3-quark picture
 - \circ Molecular state with two poles KbarN- $\Sigma\pi$
 - Strong coupled channel dynamics

Connected to the main topics:

- Strong coupled channel dynamics KN-Σπ Y. Kamiya et al., Phys. Rev. Lett. 124, 132501 (2020)
- Kaonic bound states (case of KNN) JPARC E15, PLB 789 (2019) 620
- Strangeness in NS: kaon condensate D.Logoteta Universe 2021, 7(11), 408
- Enhanced production of strangeness with multiplicity <u>T. Song @ SQM2021</u> 52

A new era of hadron-hadron interaction measurements

54

Otón Vázquez Doce

Λπ

DAONE: e^+e^- collider @1GeV \Rightarrow Production of Φ meson at rest \Rightarrow low E. kaon beam!

antikaonic hydrogen: SIDDHARTA

shift(ϵ), width(Γ) with respect to e.m. value caused by attractive/repulsive strong interaction and the presence of inelastic channels

Measurement of the $shift(\varepsilon)$ and $width(\Gamma)$ induced by the strong interaction in the lowest level atomic transition.

SIDDHARTA Coll., PLB 704 (2011) 113 $\epsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV},$

Translated via Desser-type Formula into a **K**⁻**p** scattering length that is an average of the KbarN scattering lengths for I=0 and I=1

$$\epsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu_c^2 a_p \left(1 - 2\alpha \mu_c (\ln \alpha - 1)a_p\right)$$

$$a_{K^-p} = \frac{a_0(I=0) + a_1(I=1)}{2}$$

KbarN Femtoscopy with ALICE

<u>Well known</u> K⁺p interaction ⇒ experimental determination of the source size

Jülich meson exchange model Eur. Phys. J. A47, 18 (2011)

KbarN Femtoscopy with ALICE

K p femtoscopy:

SIDDHARTA result

Test of Kyoto potential anchored to

Jülich meson exchange model Eur. Phys. J. A47, 18 (2011)

K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201

Small systems: pp collisions r~1fm

⇒ Provides a quantitative test of coupled channels in the theory Effects of coupled channels enhanced by small source

Otón Vázguez Doce

n_{o stat}

KbarN Femtoscopy with ALICE

<u>K p femtoscopy</u>:

Test of Kyoto potential anchored to SIDDHARTA result

K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201

Small systems: pp collisions r~1fm

 ⇒ Provides a quantitative test of coupled channels in the theory
 Effects of coupled channels enhanced by small source

A new era of hadron-hadron interaction measurements

Otón Vázquez Doce

KbarN at threshold and low momentum

The overlap of the kaon wavefunction with the nucleon delivers insight into the effects of the strong interaction, competing with Coulomb effects

Deliver different observables ←⇒ scattering lengths can be obtained from both (via Deser-type and Lednický–Lyuboshitz formulae)

K⁻p Femtoscopy with ALICE in Pb-Pb collisions

ALICE Coll., PLB 822 (2021) 136708

Large systems (HIC): Pb-Pb collisions, up to r~9fm

Strength of coupled channels significantly reduced

- Kyoto model
 - Fit to the scattering parameters R. Lednický Phys. Atom. Nucl. 67 (2004) 72

K⁻p Femtoscopy with ALICE in Pb-Pb collisions

ALICE Coll., PLB 822 (2021) 136708

Free-space K^-p amplitudes in various chiral models

Free-space K^-n amplitudes

Prague (P)	A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115
Kyoto-Munich (KM)	Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881 (2012) 98
Murcia (M1 and M2)	Z. H. Guo, J. A. Oller, Phys. Rev. C 87 (2013) 035202
Bonn (B2 and B4)	M. Mai, UG. Meißner, Nucl. Phys. A 900 (2013) 51
Barcelona (BCN)	A. Feijoo, V. Magas, A. Ramos, Phys. Rev. C 99 (2019) 035211

Free-space K^-p amplitudes in various chiral models

Free-space K^-n amplitudes

Prague (P)	A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115
Kyoto-Munich (KM)	Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881 (2012) 98
Murcia (M1 and M2)	Z. H. Guo, J. A. Oller, Phys. Rev. C 87 (2013) 035202
Bonn (B2 and B4)	M. Mai, UG. Meißner, Nucl. Phys. A 900 (2013) 51
Barcelona (BCN)	A. Feijoo, V. Magas, A. Ramos, Phys. Rev. C 99 (2019) 035211

⇒ Full isospin dependence needs K⁻d interaction measurements:

SIDDHARTA2:
$$a_{K^-d} = \frac{1}{2} \frac{m_N + m_K}{m_N + \frac{m_K}{2}} (3a_1 + a_0) + C$$

A new era of hadron-hadron interaction measurements

Otón Vázquez Doce

A new era of hadron-hadron interaction measurements

Full isospin dependence needs K⁻d interaction measurements:

$$a_{K^{-}d} = \frac{1}{2} \frac{m_N + m_K}{m_N + \frac{m_K}{2}} (3a_1 + a_0) + C$$

SIDDHARTA-2 with new experimental setup →measurement of antikaonic deuterium →very challenging! low yield of signal. →Complete upgrade of SIDDHARTA setup

A new era of hadron-hadron interaction measurements

Full isospin dependence needs K⁻d interaction measurements:

$$a_{K^{-}d} = \frac{1}{2} \frac{m_N + m_K}{m_N + \frac{m_K}{2}} (3a_1 + a_0) + C$$

SIDDHARTA-2 with new experimental setup →measurement of antikaonic deuterium →very challenging! low yield of signal. →Complete upgrade of SIDDHARTA setup

A new era of hadron-hadron interaction measurements

<u>Femtoscopy measurements with deuterons</u> are indeed very **challenging**

- deuterons are expensive... penalty factor of 1/1000 w.r.t. protons
- K⁺d correlation function to be used as reference

Femtoscopy measurements with deuterons are indeed very challenging

- deuterons are expensive... penalty factor of 1/1000 w.r.t. protons
- K⁺d correlation function to be used as reference
- Enriched physics case: formation of deuterons in hadronic collisions

Femtoscopy measurements with deuterons are indeed very challenging

- deuterons are expensive... penalty factor of 1/1000 w.r.t. protons
- K⁺d correlation function to be used as reference
- Enriched physics case: formation of deuterons in hadronic collisions
- Enriched physics case: three-body interactions

Femtoscopy measurements with deuterons are indeed very challenging

- deuterons are expensive... penalty factor of 1/1000 w.r.t. protons
- K⁺d correlation function to be used as reference
- Enriched physics case: formation of deuterons in hadronic collisions
- Enriched physics case: three-body interactions

⇒ Currently being studied also via three-body femtoscopy!!!

Outlook

Precision studies of the strong interaction between hadrons at the LNF

- ⇒ Exotic atoms experiments enter a new era with SIDDHARTA-2
- ⇒ Femtoscopy studies at the LHC update the experimental studies on hadron-hadron interactions

What we do now:

- Test lattice calculations
- Study bound states
- Provide important constraints to the EoS of NS

What we are going to do:

More precision studies within reach with the large data samples to be collected in LHC Run 3&4

- Direct measurements of three-body interactions for the first time
- \circ Study the formation of light nuclei
- And then we move to charmed hadrons...
... and thank you very much!

I only spent ~1.5 years as Fellini fellow...

... however this time helped me to focus my career and move to the next step!

Most of the items in my Career Plan Development have been reached or initiated:

- Get a tenure track position, eventually in Italy 🔽
- Reach a new level in my status as a researcher 🗹
- Boost my profile as an independent researcher (be able to decide "what to do next") V
- Increase the visibility of my research V
- Improve my skills: machine learning, hardware items, etc V
- Get a better theoretical understanding of the field 🔽
- In my case: learn from two supervisors in different "energy regimes" 🔽
- First steps for dissemination out of the scientific community 🔽
- Management of funds 🗸
- Improve my written italian 🗸