Haloscopes

Alessio Rettaroli alessio.rettaroli@Inf.infn.it

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

INFŃ

Funded by the European Union

Frascati, 23-24 february 2023

- Haloscope concept
- WISPs to be probed
- Detection scheme

- Haloscopes of the world in detail:
 - Currently running
 - Future haloscopes (incomplete list?)

Halo- -scope

: Detector of the galactic halo of Dark Matter

DM evidence from observations in different scales of the Universe

Multipole /

DISTRIBUTION OF DARK MATTER IN NGC 3198

Credit: NASA/CXC/K.Divon

WISPs: Weakly Interacting Slim Particles

4/25

WISPs: Weakly Interacting Slim Particles

• Halo is virialized, so the energy is

$$E_{\rm dm} = mc^2 + \frac{1}{2}mv^2$$

 $m_{\rm DM} \lesssim 3$ **Boo**st from number density

$$N_{\rm DM} \mid_{\rm dB} = 1.3 \times 10^6 \left(\frac{\rm eV}{m_{\rm DM}}\right)^4 \left(\frac{250 \,\rm km/s}{v_{\rm d}}\right)^3 \left(\frac{\rho_{\rm DM}}{0.4 \,\rm GeV/cm^3}\right)$$

• Frequencies in the microwave range for masses of

$$0.4 \ \mu \mathrm{eV} \lesssim m_\mathrm{dm} \lesssim 0.4 \ \mathrm{meV}$$

Haloscope: detection concept

Sikivie Phys. Rev. D 32,11 (1985)

 $m_a \simeq 2\pi\nu \sim 4\,\mu\mathrm{eV}\left(rac{
u}{\mathrm{GeV}}
ight)$

Axions and ALPs: photon conversion in microwave cavity placed in a strong magnetic field

$$P_{a\gamma\gamma} \propto \left(\frac{g_{a\gamma\gamma}^2}{m_a^2}\rho_a\nu\right) \left(VB^2Q\right)$$

Hidden photons: no need of magnetic field

$$P_{\gamma'} \propto \left(\chi^2 \rho_{\gamma'} m_{\gamma'}\right) (VQ)$$

Room Temperature Amplifiers **Dilution Refrigeretor** T<100 mK **Cryogenic Amplifier** (noise at SQL) **Resonant cavity** SC magnet (~10 T)

A caccia di assioni

- Consiglio europeo per la ricerca nucleare (CERN)
 - Optical Search for QED Vacuum Bifringence, Axions and Photon Regeneration (OSQAR)
 - CERN Axion Solar Telescope (CAST) and RADES
 - O International Axion Observatory (IAXO)

Massachusetts Institute of Technology (MIT)

A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus (ABRACADABRA)

• Wright Lab - Yale University

Haloscope At Yale Sensitive To Axion CDM (HAYSTAC)

Deep Underground Science and Engineering Laboratory (DUSEL) Large Underground Xenon (LUX)

Center for Experimental Nuclear Physics and Astrophysics (CENPA)
 Axion Dark Matter Experiment (ADMX)

Deutsches Elektronen-Synchrotron (DESY)

- ▲ Any Light Particle Search II (ALPS II)
- Baby IAXO

O Magnetized Disc and Mirror Axion Experiment (MADMAX)

- Laboratori Nazionali di Legnaro
 - Polarizzazione del Vuoto con LASer (PVLAS)
 QUest for AXions (QUAX)
 - Laboratori Nazionali del Gran Sasso
- Laboratori Nazionali di Frascati
 QUest for AXions (QUAX)
 KLoe magnet for Axion SearcH (KLASH)
 FLASH
 - Axion search experiments in Center for Axion and Precision Physics Researches (CAPP)
 CAPP Ultra-Low Temperature Axion Search in Korea (CULTASK)

Western Australia University Oscillating Resonant Group AxioN (ORGAN)

Crediti: Maura Sandri/Media Inaf

TASEH (Taiwan)

Haloscopes closeup

Currently running:

ADMX CAPP HAYSTAC ORGAN QUAX RADES TASEH

Future haloscopes:

MADMAX ABRACADABRA FLASH ALPHA

ADMX – Axion Dark Matter Experiment

Washington University

Volume	136 L
Q ₀	200,000
В	7.5 T
T _{noise}	600 mK

800-1000 MHz

ADMX

PHYSICAL REVIEW LETTERS 127, 261803 (2021)

Josephson parametric amplifier

Geometric capacitance

Josephson Junction

IBS CAPP – Center of Axion and Precision Physics

South Korea

CAPP 12T	1.1 GHz
Volume	37 L
Q ₀	90,000
В	12 T
T _{noise}	120 mK

CAPP 8T	1.6 GHz	
Volume	3.47 L	
Q ₀	90,000	
В	8 T	
T _{noise}	900 mK	

PACE	2.2 GHz
Volume	1.12 L
Q ₀	90,000
В	7.2 T
T _{noise}	200 mK

CAPP MC	3.2 GHz
Volume	0.65 L
Q ₀	60,000
В	8 T
T _{noise}	3.8 K

CAPP 18T	4.79 GHz
Volume	1 L
Q ₀	70,000
В	18 T
T _{noise}	500 mK

IBS CAPP – Center of Axion and Precision Physics

CAST-CAPP

CAST, CERN

Parameters	Explanation	Values	Uncertainty
В	Static dipole magnetic field	8.8 T	10 ⁻³
V	Cavity volume	224 cm ³	0.1 cm ³
С	Form factor	0.53	10%
β	Main port coupling factor	1	0.3
QL	Loaded quality factor	20000	3%
Ts	System noise temperature	9 K	1K
η	Signal attenuation coefficient	0.717	0.01

- Array of 4 phase-matched rectangular cavities
- Tuning between 4.774 and 5.434 GHz

HAYSTAC – Haloscope At Yale Sensitive To Axion CDM

Yale's Wright Lab

HAYSTAC	5 GHz	
Volume	1.5 L	
Q _L	30,000	
В	8 T	
T _{noise}	120 mK	

Squeezed-vacuum state receiver improves sensitivity and doubles the scan rate

Backes et al. Nature 590, 238–242 (2021) PHYSICAL REVIEW D 97, 092001 (2018)

ORGAN – Oscillating Resonant Group AxioN

University of Western Australia

Phase 1a completed

ORGAN	15 GHz
QL	7000
В	11.5 T
T _{noise}	5.2 K

Planned for phase 2:

From 15 to 50 GHz – quantum tech – multicavity approach – single photon counters

Laboratori Nazionali di Legnaro (LNL)

QUAX	10 GHz
Volume	0.08 L
Q ₀	80,000
В	8 T
T _{noise}	1 K

PHYS. REV. D 103, 102004 (2021)

QUAX – Quest for Axions

Setting up the new haloscope at:

Laboratori Nazionali di Frascati (LNF)

QUAX		8.5 Gł	Ηz
Volume	;	0.14 I	-
Q ₀		100,0	00
В		9 T	
T _{noise}		5 K	
	• (↓	Signal Control	Spectrum Analyzer
300 К			
	Line 1 Line 4		Line 5

20 db

600 mK

10 mK

QUAX – Dielectric and superconducting cavities

PHYS. REV. D 106, 052007 (2022)

PHYSICAL REVIEW APPLIED 17, 054013 (2022)

1200

1000

800

600

400

200

o°

.

2

0

ZFC Waveform Fit

FC Waveform Fit ZFC VNA-calibrated

FC VNA-calibrated

5

----- Copper Cavity

and a state of the state of the

3

B [T]

Phys. Rev. D 99, 101101(R) (2019)

QUAX – Superconducting quantum devices

GHz cavity put inside the CAST dipole magnet

RADES	8.4 GHz
Volume	0.03 L
Q ₀	16,000
В	8.8 T
T _{noise}	1.8 K

5 sub-cavities connected by inductive irises

doi.org/10.1007/JHEP10(2021)075

TASEH – Taiwan Axion Search Experiment with Haloscope

National Central University, Taiwan

TASEH	5 GHz	
Volume	0.234 L	
Q ₀	60,000	
В	8 T	
T _{noise}	2.2 K	

PHYSICAL REVIEW LETTERS 129, 111802 (2022)

Future experiments

FLASH – Finuda magnet for Light Axion SearcH

Recycling of the FINUDA 1.1 T magnet at Laboratori Nazionali di Frascati (LNF)

Tuning from 100 to 300 MHz

GRAHAL – Grenoble Axion Haloscope

Grenoble, France

arXiv:1610.09344v1

43 T magnet, 11.5 GHz frequency

Collaboration with QUAX from INFN & University of Padova

Dielectric cavities (7-10 GHz)

Collaboration with CAPP/IBS, KAIST, Daejeon, South Korea Thin Cu cavities (200-600 MHz)

CADEx – Canfranc Axion Detection Experiment

Canfranc Underground Laboratory - Spain

- Haloscope from 80 to 110 GHz
- Multicavity scheme with tunable rectangular cavities

Kinetic Inductance Detectors

•

arXiv:2206.02980v1

MADMAX – MAgnetized Disc and Mirror AXion experiment

DESY, Hamburg

BRASS – Broadband Radiometric Axion SearcheS

University of Hamburg

Correlations with multiple chambers

ABRACADABRA

A B roadband/R esonant A pproach to C osmic A xion D etection with an A mplifying B - field R ing A pparatus

MIT

Toroidal magnet

$$\underline{J}_a = -g\underline{B}_0\partial_t a$$

PHYSICAL REVIEW D 99, 052012 (2019)

Snowmass Axion Paper arXiv:2203.14923

DM-radio

ALPHA – Axion Longitudinal Plasma HAloscope

В

Detection through metamaterial From 5 to 50 GHz

$$\underline{E} = -g\underline{B}_0 a \frac{\omega_a^2 - i\omega_a\Gamma}{\omega_a^2 - \omega_p^2 - i\omega_a\Gamma}$$

Phys. Rev. Lett. 123, 141802 (2019)

Many others

	Туре	source
SHAFT	LC (with ferromagnetic toroids)	arXiv:2003.03348v2
TOORAD	Topological antiferromagnets	arXiv:1807.08810v2
BREAD	Cylindrical dish antenna	arXiv:2111.12103v2
WISPLC	LC circuit	arXiv:2111.04541v3
ORPHEUS	Fabry-Pérot cavity	Phys. Rev. D 91, 011701(R)
ADMX-SLIC	LC circuit	Phys. Rev. Lett. 124, 241101
ADMX-Sidecar	Resonant cavity	Phys. Rev. Lett. 121, 261302
T-RAX	Rectangular waveguide	arXiv:2203.15487v2
SRF-m^3	Supercond. Radio Freq. Cavities	arXiv:2007.15656v1
DANCE	Bow-tie optical cavity	arXiv:2303.03594v1
LAMPOST	Dielectric haloscope	arXiv:1803.11455v3

Thank you!

backup

Others: BRASS, SHAFT, DM-Radio, TOORAD

GRAHAL

Cast-capp Cadex BREAD?? LAMPOST?? (fa DP) SRF-m^3 ?? (non trovato) WISPLC?? WISPFI?? (Laboratory exp) ORPHEUS ?? WISPDMX ?? (fa DP) SLIC ??

High frequency gravitational waves detection

Sources: primordial black holes, stochastic background of HFGW

The haloscope is directional

Resonant modes different from TM010

arXiv:2112.11465v1

270*

1.11

1.08

 h_{\times}

10

 h_{+}

$$\frac{df}{dt} \propto \frac{B^4 V^2 Q_L}{T_{sys}^2}$$

 $\beta = 2$ maximizes the scan rate