

stituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Funded by the European Union

The GrAHal project within the context of the Grenoble high magnetic field facility

Kick-off Meeting, Friday 24 February

P. Pugnat, LNCMI-Grenoble/CNRS, EMFL

1

Outline

- ► Focus on high field facilities & magnets
 - International context
 - Highest DC field magnets worldwide
 - 43+T Hybrid Magnet
 - Presentation of LNCMI
- ► GrAHal-QUAX-CAPP
 - Scientific Motivations
 - Principle of the Experiment (Sikivie Haloscope)
 - Current Status of GrAHal & First Results - Cu and dielectric RF cavity 4-7 GHz (ANR French funding agency, 2022-2026)
 - Objectives and plans
 - GrAHal-QUAX for 7-10 GHz (dielectric RF cavity)
 - GrAHal-CAPP for 200-600 MHz (thin Cu RF cavity)
 - Upgrade phases under study
 - Within a 40 T all superconducting magnet under construction
 - Toward a 60 T Hybrid magnet (?)

International context of High Field Facilities

Hybrid Magnets Worldwide

37 DP vacuum impregnated separately

📕 13 x 18 mm²

Cooling by forced flow supercritical He ~ 11g/s @ 5 bars

Grenoble, France	Nijmegen, Netherlands	Hefei, China	Tallahassee, FL
8.5 (9) + 34.5 (36+) = 43 (45+) T	12 + 33 = 45 T	11 + 34 = 45 T	11.5 + 33.5 = 45 T
34 (32-30?) mm, 24 (30) MW	32 mm, 24 MW	32 mm, 30 MW	32 mm, 30 MW
RCOCC Nb-Ti, 1.8 K	CICC Nb3-Sn, 4.2 K	CICC Nb3-Sn, 4.2 K	CICC Nb3-Sn, 4.2 K
7.1 kA, 1100/1826 mm dia.	20 kA, 720/1286 mm dia.	13.4 kA, 680/1650 mm dia.	10 kA
2024	2024	45.22 T Aug. 12, 2022	45.17 T June 26, 2000

Technological choices

Industrial production line developed, built & installed at LNCMI

Innovative developments have been achieved based on induction heating to strictly control R_a & AC losses

P. Pugnat, R. Pfister *et al., IEEE Trans. Appl. Supercond.* **26**, 4302405 (2016)

Crimping, soft-soldering, calibration & winding in single pancakes for delivery

Focus on LNCMI, *i.e.* Laboratoire National des Champs Magnétiques Intenses, **also a user facility...**

Magnets at LNCMI-Grenoble

► Focus on available superconducting magnets (in addition to the hybrid one)

LNCMI Grenoble magnet Id	Max Field (T)	Magnet Bore (mm)	Equipment Temperature	Experimental Set-up
1	15.8	50 cold bore	VTI : 1.8 K - 300 K	EPR
2	9	80 cold bore	VTI : 1.4 K - 300 K	NMR
3	15.4 / 17.1	52 cold bore	VTI : 1.4 K - 300 K	NMR
4	15 / 17	52 cold bore	VTI : 1.4 K - 300 K DR : 30 mK - 1.0 K	NMR
5	7.8 (fix)	89 warm bore 60 variable T	VTI: 4 K 300 K	NMR at fixed field 330 MHz for 1H
6	12 / 14	52 cold bore	VTI : 1.2 K - 300 K	Specific heat
7	14 / 16	50 warm bore 33 cold bore	1.5 K - 300 K	Optical spectroscopy
8	11 / 13	50 cold bore	4 K	FIR spectroscopy
9	11	30 cold bore	VTI : 1.2 K - 300 K	Transport, In situ rotation, FIR-Laser
10	16 / 18	50 cold bore	VTI : 1.2 K - 300 K	Transport, Magnetization

https://emfl.eu/find-experiment-old/dc-magnets/#supraG

https://emfl.eu/apply-for-magnet-time/

GrAllal - QUAX - CAPP

Grenoble Axion Haloscopes

agence nationale la recherche AU SERVICE DE LA SCIENCE

Theory Group

J. Quevillon

K. Martineau

C. Smith

A. Barrau

R. Ballou T. Grenet P. Perrier N. Roch L. Planat P. Camus C. Bruyère

P. Pugnat R. Pfister S. Krämer

Collaboration with QUAX from INFN & University of Padova C. Braggio, N. Crescini

Collaboration with CAPP/IBS, KAIST, Daejeon, South Korea W. Chung, O. Kwon, Y. K. Semertzidis

Scientific Motivations

- Two among the most fundamental problems of Particle Physics & Cosmology can be solved by the discovery of a single particle : **The QCD Axion**
 - Predicted independently by Weinberg and Wilczek (1978) from the breaking of the Peccei-Quinn symmetry (1977) to solve the strong CP problem, one of the key remaining questions of the Standard Model of Particle Physics, *i.e.* "Why, in view of nEDM < 3.6 x 10⁻²⁶ e·cm @ 95% CL, the QCD seems <u>not</u> to break the CP-symmetry ?"
 - Axion in the mass range 10⁻⁶-10⁻³ eV will also solve the DM problem; it is one of the most serious cold DM candidates & the only non-supersymmetric one, *this in the context of none signature of SuSy observed so far at LHC*...
 - Neutral pseudo-scalar 0⁻
 - Axion coupling to photons

$$a_{\alpha\gamma\gamma} = g_{\alpha\gamma\gamma} \phi_{\alpha} \mathbf{E} \cdot \mathbf{B}$$

• Moreover, many ALPs/FIPs are predicted by String Theory opening new windows at the ultra-low energy frontier.

First proposal by P. Sikivie (in 1983, Rev. Mod. Phys. 93, 015004)

Visit of Olympie during 2nd Patras Workshop 2006 in Greece

Axion electrodynamics

$$\mathbf{\nabla} \cdot \mathbf{E} = g_{a\gamma\gamma} \mathbf{B} \cdot \mathbf{\nabla} a$$

$$\mathbf{\nabla} imes \mathbf{B} - \partial_t \mathbf{E} = g_{a\gamma\gamma} \left(\mathbf{E} imes \mathbf{\nabla} a - \mathbf{B} \partial_t a
ight)$$

$$\nabla \times \mathbf{E} + \partial_t \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\ddot{a} - \nabla^2 a + m_a^2 a = g_{a\gamma} \mathbf{E} \cdot \mathbf{B}$$

" Most importantly, the cavity experiment uses a variety of technologies - microwave engineering, ultra-low noise receivers in a high magnetic field environment, cryogenics which are not typically used by high energy physicists and which had to be specially developed.

... Feynman's advice to young scientists aspiring to great discoveries. He said: "You have to develop your own tools". "

https://ep-news.web.cern.ch/content/qa-pierre-sikivie

UG A

agence nationale

Université Grenoble Alpes

an

Brief Reminder on RF-Cavity Haloscopes (Sikivie)

Grenoble Axion Haloscopes

$$P = 2,67.10^{-25} (Watt) \left(\frac{g_{\gamma}}{0.97}\right)^2 \left(\frac{\rho_a}{0.45 GeV/cm^3}\right) \left(\frac{\beta/(1+\beta)^2}{2/9}\right) \left(\frac{C}{0.5}\right) \left(\frac{B_0}{10T}\right)^2 \left(\frac{f}{1GHz}\right) \left(\frac{V_{ol}}{1L}\right) \left(\frac{Q_{eff}}{10^4}\right) \left(\frac{Q_{eff}}{10^$$

A near quantum limited Josephson Parametric Amplifier, based on superconducting metamaterials

Grenoble Axion Haloscopes

Key expertise at CNRS-Grenoble for High magnetic fields, Extreme Low Temperatures & Quantum Detectors

European Magnetic Field Laboratory LNCMI

Dresden/LNCMI-Toulouse, pulsed up to 95/91 T, 1-10 ms Nijmegen/**LNCMI-Grenoble**, DC up to 38/36 T, Project 43+ T

https://emfl-users.lncmi.cnrs.fr/SelCom/proposals.shtml

European Microkelvin Platform

20 leading ultralow temperature physics & technology Institutes in Europe including 7 submilliK facilities

http://emplatform.eu/about/facilities

Nicolas Roch QuantECA Team Institut Néel, Grenoble, France

GrAHal 1st experimental Run : New exclusion limit around 6.375 GHz

- For the range 1-1200 mbar, excursion $\Delta f = 20$ MHz, i.e. ~ 0.1 μeV
- Sensitivity in the range of 20 x KSVZ @ 4.4 K
- Detailed data analysis in progress

T. Grenet et al.

Pierre.Pugnat@Incmi.cnrs.fr

https://arxiv.org/abs/2110.14406

GrAllal

► Initiative presented during the 1st PBC Techno WG meeting in Sept 2017 (https://indico.cern.ch/event/667744/)

Hybrid Magnet = Sc + Resistive

Scientific case within the European Strategy of Particles Physics (ESPP) https://www.nature.com/articles/s41567-020-0838-4

Field	Warm dia.	RF-cavity dia.	Freq. TM010	Axion mass
43 T	34 mm	20 mm	11.5 GHz	47.2 μeV
40 T	50 mm	34 mm	6.76 GHz	27.8 μeV
27 T	170 mm	86 mm	2.67 GHz	11 µeV
17.5 T	375 mm	291 mm	0.79 GHz	3.2 μeV
9.5 T	812 mm	700 mm	0.33 GHz	1.4 µeV

Grenoble Hybrid in the commissioning phase, operation foresees in 2024

Grenoble Axion Haloscopes

Approval for the run of GrAHal @ 43 T & 11.5 GHz (before 31st December 2024 – funding for operation at 24 MW is secured...)

Within available 4.4 K LHe Cryostat @ LNCMI

Adapted from https://github.com/cajohare/AxionLimits/blob/master/AxionPhoton_Closeups.ipynb

State-of-the-art exclusion plots for axion search from I worldwide running haloscopes. Very high magnetic I fields B provide unique opportunities for reaching I unprecedented sensitivity, the awaited signal being I proportional to B²V. GrAHal first results¹ are shown by the solid line in red at 6.375 GHz.

From a conservative estimate, *i.e.* without using JPAs, the proposal using the 43 T hybrid magnet will explore the discovery potential area around the dashed blue line at 47 μ eV*. It will extend in mass/frequency to about 20 neV/hour@43T at the ultimate sensitivity by varying the LHe temperature, which will change the resonant frequency of the RF-cavity. By lowering the time integration and therefore the sensitivity obtained at each frequency step, a larger axion mass range can be probed for the same total duration of data taking at 43 T. One of the GrAHal longer term objectives is to cover most of the uncharted territories between 10⁻⁶-5.10⁻⁵ eV including the funded ANR proposal.

¹<u>https://arxiv.org/abs/2110.14406</u>

Rough Timeline

	2022	2023	2024	2025	2026	2027	2028	2029	2030	
GrAHal (ANR)										
GrAHal - QUAX										
GrAHal - CAPP										
	Experimer	nt Running								
	Preparato	ry Phase								

Time needed for in-house development of specific cryostats with double 3He/4He dilution refrigerator (DR)

Cooling stages 300 K/70 K/4 K/1 K/40 mK

The required cooling performances of the cryogenics are similar to the DR system used in astrophysical applications developed at Institut Néel for the NIKA and CONCERTO experiments. The choice of the "dry" cryogenic approach avoiding the massive use of cryogenic fluids relies on a 4 K powerful cryocooler.

Synergy with Developments for Quantum Computing

P. Camus, C. Bruyère, IN

GrAHal-QUAX for 7-10 GHz (dielectric RF cavity)

Field	Warm dia.	RF-cavity dia.
27 T	170 mm	86 mm
17.5 T	375 mm	291 mm

Collaboration with C. Braggio et al. (INFN and Univ. Padova) "Search for Galactic Axions with high-Q Dielectric Cavity" Phys. Rev. D 106, 052007 (2022); Phys. Rev. Applied **17**, 054013 (2022)

Use of the TM030 mode $Q_{loaded} \sim 300\ 000$

- First test with High Q Dielectric cavities + Dilution Fridge (30 mK, 0.7 l) + 14 T + TWPA
- R&D on photon counters for better SNR

GrAHal-CAPP for 200-600 MHz (thin Cu RF cavity)

Field	Warm dia.	RF-cavity dia.	Freq. TM010	Axion mass
9.5 T	812 mm	700 mm	0.33 GHz	1.4 µeV

Thin* Cu RF-cavity

Made by CAPP/IBS, KAIST, Daejeon, South Korea, W. Chung, O. Kwon, Y. K. Semertzidis (arXiv:2210.10961, accepted, PRL)

*Ex. of 0.5 mm thickness Cu cavity made by CAPP; need to be enlarge to 1 mm or more.

 $Q_{loaded} \sim 35\ 000 - 38\ 000$

Dielectric tuning rode to lower the resonant frequency

GrAHal Targeted exploration windows within 1-50 µeV, *i.e.* 0.2-12 GHz

Grenoble Axion Haloscopes

The exploration of the high frequency domain (> 10 GHz) down to DFSZ will require some breakthroughs (photon counters, HTS high-Q RF-cavities...) for Sikivie haloscopes or/and innovative ideas to reduce time integration...

> AND Higher field magnets !!

FASUM funded Project Forty Tesla All Superconducting User Magnet

(French research agency – Université Grenoble Alpes, CNRS, CEA – Started December 2021, (5 years)

http://lncmi.cnrs.fr/actualite/fasum-project-financed-by-french-anr-equipex-program/

DOI: 10.1016/j.cryogenics.2020.103053

Contact: xavier.chaud@lncmi.cnrs.fr

Proposal for a 60 T high-field hybrid* magnet H. J. Schneider-Muntau (CS&T) & P. Pugnat (CNRS/LNCMI-Grenoble)

*Hybrid = (Resistive + HTS + LTS) or/and (HTS? + HTS + LTS)

Proposal presentated in Sept 2019 to MT26** & in May 2022 to the Workshop

FuSuMaTech

(Futur for Superconducting Magnet Technology)

**https://indico.cern.ch/event/763185/contributions/3416454/

Ref. "Conceptual Design Optimization of a 60 T Hybrid magnet", *IEEE Trans. on Appl. Supercond.*, June 2020; DOI: 10.1109/TASC.2020.2972498

We need HTS multi-ribbon or multi-strand HTS & LTS reinforced conductors **BUT ALSO SUPPORT from the WORLWIDE COMMUNITY...**

Synergy with

muon collider

@ CERN ?

As a Conclusion

Thanks for Your Attention