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Our Working group 2

WG 2: WISPs Dark Matter and Cosmology.

... WISPs as dark matter candidates ...
... Production mechanisms ...
... Axion Thermal mass (lattice, ChiPT) ...
... Cosmic string decays ...
. Effects on Large and small-scale

Structure ...
... hot DM (lattice, ChiPT)...

WISPs = Weakly-interacting™ slim/sub-eV Particles

*not weak like electro-weak



WISPs as dark matter candidates

- WISPS are natural candidates for CDM

low mass, need to be feebly interacting, thermal populations subleading’, bosons™..
axions (QCD &ALP), pseudo Nambu-Goldstones, U(1) bosons, ... moduli, MCPs, sterile nu's..

- They need non-thermal production mechanisms

WISPs are/can be sensitive to initial conditions and very early cosmology (good and bac
(thermalisation erases effects of initial conditions in cases like WIMP DM)
vacuum realignment, topological defects decay, vacuum fluctuations ..

- WISPy DM might have disctintive effects at small cosmological scales

wave-effects, miniclusters

- They are often decaying DM

low mass, feebly interacting nature makes loooong lifetimes
some opportunities for LM detection



Production mechanisms

-Vacuum realignment

1- Initial conditions are not on the vacuum state

2 - WISPy potential drives the field to oscilate around it from times t~ 1/mass
3 - oscillations are coherent state of particles with EOS <w>~0
(if ICs are sufficiently homogeneous ... typically k~H)

1 -1Cs vary with cosmology model ...

pre-inflation (~homogenous field)
stochastic axion (large vacuum fluctuations) [Graham 2016]

kinetic misalignment (~large field velocity)
hill-top ICs

2 - well understood

.. in the linear regime (when fluctuations are small and linear)
not so in non-linear regimes (need some more numerical sims, resolution issues, axitons)

3 - well understood

except perhaps the issue of Sikivie's Bose-Einstein condensation and its effects on galactic scales*



Production mechanisms

- Decay from topological defects

- topological defects have dynamics on O(1/H) scales that produce k~H axions
- they require numerical simulations for precision
- theoretical models can be sometimes conflicting

- global cosmic strings
- domain walls
- other similar structures?

- Monopoles

- Bubbles from phase transitions
.22

- Mostly studied in the case of the QCD axion

-ALP generalisation is easy (some works already)
- Some other scalars like relaxions
- what about other WISPs? hidden photons, MCPs ... ? not much

- generalisation to non-standard cosmologies



Production mechanisms

- Thermal production

- can be naturally subleading
- can still produce hot-warm dark matter effects (suppression PS at high-k, etc...)
- Computationally easy in perturvative regimes

- Uncertainty from early Universe

- model dependency (more patrticles, d.o.f)

- entropy production?

- treat on a model basis

- CMB4 detection of Neff, window to new d.o..

- Uncertainty from non-perturbative QCD

- QCD axions in the ~ eV mass regime decouple during the QCD cross-over T~ 150MeV
where perturvative calculations are not reliable

- lattice QCD input could be useful

- region is borderline-excluded



Axion thermal mass

- Lattice input for QCD axion cosmology

Borsanyi 16

10

100 |

102 f

104 |

% (fm=4)

1078

1079

10°%2

. Topological

- susceptibility

10-1

100 200

500 1,000 2,000

T (MeV)

1
W T
g 09} .
8 - 95(N/g,(T) —
0.7 g(N/g(T) — A
110
90 F
c 70
S
50 F
30+
10

108
T (MeV)

101 102

104

10°

0.14
0.12

0.1}
0.08 ¢
0.06
0.04 t

0.02
0

Borsanyi 22
agla; |
V(6)=a, - a; cos(0)+ a, cos(26)
40°x12
] 48°x16
i 643x24 ——
I xptat T=0 —— -
Stefan-Boltzmann limit
_ rxponential fit ——
| 4
’X
140 150 160 170 180 190 200 210

- Different groups do not converge (topology at high T is extremely resource consuming)

Plot by
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... Lattice issues: Results not entirely settled; extrapolation to high temperature
regime may be subtle and needs further studies...
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Cosmic string decays (axion DM mass)

- Axion DM mass from theory could/should (not) guide the experiment

Different Cosmo scenarios

* LRD 6 = 2.155
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- post-inflationary PO N=1 has no IC uncertainty (some model, and cosmology uncertainty)

the estimates of the axion DM mass disagree due to the different interpretation of numerical simulations



post-inflationary scenario

- ordered by time, scale factor, redshift, temperature

huge dynamical range 1030
between Horizon size and string
thickness

nflation?

Axitons

Free-stream (RD)

Miniclusters form

hierarchical growth

Galaxy forms with MC halo

radiation domination (assumed)

matterd. , . o



how to tackle the large-dynamical range problem

Two approaches:

Direct simulation : 1) Simulate and 2) count the axions, extrapolate woore, Redondo, Buschmann

>

Moore, Redondo, Buschmann
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In-Direct simulation : 1) Simulate to model axion emission from strings, 2) extrapolate the spectrum, 3) count the axions
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Indirect method

Gorghetto, Redondo, Buschmann

- scaling solution (with log corrections!)

(log corrections challenged)

02

fat
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log(m,/H)

- axion spectrum .. power-law with UV and IR cut-offs (with log corrections™) Gorghetto*, Redondo*, Buschmann
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Results and controversies

Extrapolation xi~10, q~2
Extrapolation xi~1,q~1 or xi~15, <1

Direct simulations

Iy
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Current plans...

- Numerical simulations (4000”3, 1100"3) reach almost the critical value Gorgueto
1.1
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- AMR can give us a few extra factors of 2 to reach 9~10 (theoretically up to 12)
ot~ s A Buschmann 2021- k/H
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Adaptive Mesh Refinement

For strings...

Fixed Grid AMR

« Enables increase In(R/0) with fixed

« Ax fixed throughout the simulation na
(limited) resources

e For 0 ~ 1 strings, must use at least

Ax ~ 05  E.g. equivalent In(R/6) ~ 8 simulation

ran on 32x fewer processors AND

. . . multiple 10x faster using AMR
« Computational resources typically limit to

~ 4096° grid points, In(R/8) ~ 8 O(days) — O(hours)
| e Should comfortably achieve
N In(R/6) ~ 10 or higher with same
resources
- « Equivalent fixed grid would need fixed
T grid of at least > 65000 for same box

size

— 1.0e+00

ModPhi

F: Bonus: potential for even further
% speedups with GPU support

— 0.0e+00



Simulations for "pre-inflation” non-linear scenarios

Use our very powerful codes for these rare non-linear scenarios

kinetic misalignment
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Axion minihalos and axion stars (same for dark photons)

Seeds in early Universe:

Gravitational collapse around z_eq

Hyerarchical growth

Survival in the galaxy

DM field in the galaxy (voids?) see talk of Giovanni Pierobon
Microlensing

Collisions with compacts, radio signals



Axion minihalos and axion stars (same for dark photons)

Seeds in early Universe:

Simulations with Strings, other needed,

Gravitational collapse around z_eq

problems with extrapolation

7=06.00,2 = 0.00L;

ylL]

10?

101 E

10~ 4

10—2 4

log o/@

o[L]

— 7=5.0
— WKB
from n(k)

problems with

- Loads of low-M MCs j

10°

10t 102 108

k(1) L]

Redondo 18, Buschmann 19, Gorghetto 22

large scales are trustable, convert to N-body and simulate gravity ~ Eggemeier 20

- Large simulation (N=10243 particles) in a Large box (L= 24 L) simulated with jaxions in a 81923 grid
- Periodic boundaries, volume effects when smallest scale becomes non-linear

dn/dlog,, M [pc™]

o2
Mycu [M

- Nearly 80% of axions

- NFW reasonable fit bound in MCs!!
- Spherical collapse with - better than r~*/* (acretion) - Tidal disruption with galaxy
®=(5)~1at z~zq® - concentration ~ M stars can lower the number
- Typical MC & ~ 1 — My ~ 10" M, not well resolved for smallM  _ Most axions in Massive MCs

- Clusters of miniclusters & < 1 - Mean MC has low mass



Axion minihalos and axion stars (same for dark photons)

Seeds in early Universe: Redondo 18, Buschmann 19, Gorghetto 22

Gravitational collapse around z_eq

Formation and Growth of axion stars in MCs

Levkov 18 Eggemeier 19
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Axion minihalos and axion stars (same for dark photons)

Hyerarchical gl'OWth partially addressed, not so complicated Eggemeier 20, Gorghetto 22

df
dlog,, M




Survival in the galaxy

Theoretical, montecarlo, numerical simulations, but not (much) feedback from Early Universe SIM-motivated properties (HMF, density profiles’, etc.

Axion minihalos and axion stars (same for dark photons)

Dukuchaev 17, Kavanagh 21, Dandoy 22, Zurek 22

Dukuchaev 17

ol

—  model

® simulations




Axion minihalos and axion stars (same for dark photons)

Volume rendering

Vo ~ 220 km/s

Eggemeier, O’Hare,GP, Redondo, Wong, 2022

o,(n)
0(10°) trajectories

I Sy TR DN ¥
= o \/ Py z, (P(r) = (p() )

Observation time [years]

2 4 6 8 10
1 1 1 1 1

12
1

14 16
1 1

_.
8
2

A

Local density variation, 7,
g
X

6 s G

2 6
Ar/(0.4 mpc)

I ]
8 10

Expected variation of 20-30%
for an observing time of O(1) year

Almost 100% on even
longer timescales

DM field in the galaxy (voids?) see talk of Giovanni Pierobon

Relevant question for Direct Dark matter, first steps



Axion minihalos and axion stars (same for dark photons)

Microlensing

Theory expectations based on
0(1) analytical properties
were very optimistic

Expectations based on
analytical properties from numerical
simulations make it much harder
BUT STILL the num. sims. are not FINAL
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Axion minihalos and axion stars (same for dark photons)

transient radio signals from
MC(s, axion starts in the B-field
of neutron-stars
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Collisions with compacts, radio signals
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Axion minihalos and axion stars (same for dark photons)

Parametric resonance

Radio emission from axion stars
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- CMB data can pinpoint dark radiation levels to Neff ~ thermal axions decoupled above EWPT

QCD PT
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- Calculations of decoupling around QCD PT were not reliable (LO CHPT) improved by Unitarisation
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4+ LO and NLO ChPT reliable up to T, = 70 MeV
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0.15! N To. > Tc ¢A Additional corrections needed for future sensitivities, K's, f0(880), thermal effects
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Large scale structure

- 'Large” mass WISPs

Strings outside the horizon (preinflation)  Kapler

warm DM suppression of PS

- Ultra-light WISPs

Ly-alpha
Power spectrum



Cosmic birefringence

ALP DM coupled to photons with extremely low mass rotates polarisation of CMB

See talk of P. Diego
Future prospects
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e  Better understanding of Galactic dust EB



Conclusions

- Extremely exciting prospects and opportunities

- | have been quite biased (the art is broader than this meagre statement)

- QCD axion is somewhow nicely covered by up-to-date studies but other WISPs much less



