

Cross sections update from GSI 2021 data

Giacomo Ubaldi

XIII FOOT Collaboration Meeting, Perugia

13/12/2022

GSI 2021 Analysis

- Data-taking at GSI (Darmstadt, Germany) in 2021
- 16O 400 MeV/u on 5 mm C target
- Partial setup: no magnet, only one module of calorimeter

My analysis goal:

- Elemental fragmentation cross section measurements
- Angular differential cross section measurements for every charge

To compute elemental cross section and angular differential cross section:

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)} \quad \frac{d\sigma}{d\theta}(Z, \theta) = \frac{Y(Z, \theta) - B(Z, \theta)}{N_{beam} N_{target} \Omega_{\theta} \epsilon(Z, \theta)}$$

- **Y:** fragment counts
- **Bkg:** background source counts
- **N**_{beam}: n° of primary events
- **N**_{target}: n° of scattering centers per unit area
- **E:** efficiency
- $\boldsymbol{\Omega}_{\boldsymbol{\vartheta}}$: angular phase space
- Event reconstruction in SHOE with Global Tracking (Matteo F., Roberto Z.)
- Analysis procedure in **Python** code

2

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

1) Starting from a **MC dataset** of 10⁶ events generated by FLUKA to simulate detectors and beams of GSI 2021 campaign.

Giacomo Ubaldi

1) Starting from a **MC dataset** of 10⁶ events generated by FLUKA to simulate detectors and beams of GSI 2021 campaign.

- 2)Yield of Z obtained from reconstructed tracks
 - Exploiting tracking reconstruction algorithm
 - Simulating a "trigger" in order to consider only fragments

Z yield and Bkg sources

1) Starting from a **MC dataset** of 10⁶ events generated by FLUKA to simulate detectors and beams of GSI 2021 campaign.

2)Yield of Z obtained from reconstructed tracks

- Exploiting tracking reconstruction algorithm
- Simulating a "trigger" in order to consider only fragments

- 3)Background obtained from MC cuts on:
 - Charge algorithm mis-reconstruction
 - Tracking algorithm mis-reconstruction

Z yield and Bkg sources

Before and after background removal: more diagonal migration matrix → less noise sources

4

 $\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$

4) Track efficiency obtained as:

$$\epsilon(Z) = \frac{N_{track}(Z)}{N_{true}(Z)}$$

where

- N_{track} is obtained by tracking algorithm
- N_{true} are generated particles from the simulation with angular acceptance $\theta \leq 8^{\circ}$

5 XIII FOOT Collaboration Meeting

MC Closure test elemental cross section

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} N_{target} \epsilon(Z)}$$

- Fiducial (θ≤8°) elemental cross section
- Only statistical errors

6

- comparing the MC data-like cross sections with the MC generated ones.
- understanding the **reliability** of the analysis chain and algorithms \rightarrow **solid analysis**

Charge	$\sigma_{reco}(mb)$	$\sigma_{MC}({ m mb})$
Z = 1	946 ± 9	949 ± 4
Z = 2	762 ± 7	770 ± 4
Z = 3	74.1 ± 1.3	74.1 ± 1.2
Z = 4	35.3 ± 1.5	35.2 ± 1.2
Z = 5	37.4 ± 1.6	37.2 ± 1.7
Z = 6	82.8 ± 1.7	79.3 ± 1.2
Z = 7	97.3 ± 1.4	103.0 ± 1.5

MC Closure test angular differential cross section

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\theta} \cdot \frac{1}{sen(\theta) \cdot 2\pi}$

Z=5

Z=6

Experimental data

run 4306 (Minimum Bias)

• Vertex synchronization lost after 65k events:

Bm-vtx correlation from 65k to 75 k evts

Thanks to Yun

Using a sampling of 65k evts in the following analysis → it could be small statistics

8

Bm-vtx correlation up to 65 k evts

Alignment

- At the beginning, very low ability in *global tracking* reconstruction
 - \rightarrow important improvements with new alignment of detectors in geometry

Alignment

- At the beginning, very low ability in *global tracking* reconstruction
 - \rightarrow important improvements with new alignment of detectors in geometry

Experimental results elemental cross section

$$\sigma(Z) = \frac{Y(Z) - B(Z)}{N_{beam} \; N_{target} \; \epsilon(Z)}$$

• experimental results

Elemental Cross Section

experimental results and comparison with MC

Highest discrepancy for elements with high angular distribution (see next)

Alignment - global track

٠

Reference system with beam (X,Y) in (0,0)

track X position vs Y position

Global tracks XY profile

The beam is shifted on X axis of \sim 0.01 cm

Global tracks theta angle

It seems only "straight" (<3°) tracks are reconstructed (however the statistics is low)

11 XIII FOOT Collaboration Meeting

Experimental results angular differential cross section

13 XIII FOOT Collaboration Meeting

Thank you for the attention

• For the analysis: Increase the statistics

Future perspectives:

Including systematic uncertainties Including unfolding to correct for migrations

• For the global tracking reconstruction:

Deeper studies about alignment and detector components

- Analysis strategy checked by **MC** events with a **solid closure test**
- First preliminary results of **experimental** cross sections with full reconstruction algorithm

Conclusions

Backup slides

Backup slides

Analysis

Example: Track reconstruction

 It is possible that every bar layer of the TW is hit by more than a fragment at the same time: multiple hits / ghost hits mis-reconstruction

Reconstruction, Track Algo

- Another source of systematics can be the way points are collected in a track
- In the best scenario, all points belong to the same particle:

Reconstruction, Track Algo

• However, due to the presence of a lot of secondary fragmentation, some points can belong to other particles.

Wrong points collected in the track

- The McId of the track is given by the most present particle in the collection
- However, if the TWPoint is of another particle \rightarrow its McId is different
- \rightarrow filter out all the tracks in which $Mcld_{track} \neq Mcld_{TWPoint}$

Implementation of Unfolding

$\mathbf{y}_{i} = \mathsf{M}_{ij} \mathbf{x}_{j}$ $\longrightarrow \mathbf{x}_{j} = \mathsf{M}_{ij}^{-1} \mathbf{y}_{i}$

 Little variation because the migration matrix is very diagonal

Giacomo Ubaldi

Thanks to Sofia C.

5

Backup slides

Alignment studies

Alignment - global track wrt BM direction

Reference system with beam (X,Y) in (0,0)

13 XIII FOOT Collaboration Meeting

BM and VT XY PROFILE

Position of VT track When no global track Reconstruction vs event

→ specific pattern beam spill?

Alignment - residuals

Alignment

vertex

29