
ACCELERATOR
COMPUTING

INFRASTRUCTURE
& CONTROLS R&D

C. Bisegni (INFN-LNF), S. Calabrò (LAL & INFN-LNF), L. Catani (INFN Roma TV),
P. Ciuffetti (INFN-LNF), G. Di Pirro (INFN-LNF), L. Foggetta (LAL & INFN-LNF),

G. Mazzitelli (INFN-LNF), A. Stecchi (INFN-LNF), F. Zani (INFN Roma TV)

WORK TO CARRY OUT

DELIVERABLES

• design, develop and maintain the
computing infrastructure

• design, develop and maintain the
software infrastructure and
Controls System

• design, develop and maintain the
user interface,
identification and security
and remote control room

ACCELERATOR FARM

• is under installation a computer FARM dedicated to accelerators
simulation & calculation code

• 5/16 slot rack equipped with blede 2 processor Intel Xeon X5660, 64
bit esa-core,2,80 GHz, 48 GB RAM, FiberChannel, GigabitEthernet
dual.

• simulation and calculation code: HFSS, GdFidL, MatLab, Mathematica,
OPERA, ORCAD, inventor, FLUKA, GEANT, MCNPX, ANSYS

• Controls R&D: Labview, memcache, mongoDB, etc

• hardware has been installed in April 2011. FARM configuration under
the LNF computing infrastructure is going on. First test, software
installation and configuration are also started. The FARM is foreseen be
ready for users in June.

CONTROLS SUPERB R&D

• we would like to follow today software trends dominated by
web technologies and services where large database are used and
very high throughput is needed on the largest and robust available
data bus: ethernet

• be free to implement any kind of devices reducing the hardware
dependence and development time

• exploit the availability of many programable cpu embedded
devices

• be able controls and where needed acquire data with
performance limited only by hardware availability

move from polling to pushing based system
introducing new different feature to be exploited

IDEA...
• design a system where use the knowhow and tools coming from large

amount data handling like in google, facebook, etc that means no
relational DB where store live and history data with very high
performance.

• all devices are completely independent and auto-configuring directly
(semantics and syntax) in a metadata server allowing easy and
fast data retrievement

• development on any different software and hardware platform

• to produce a Control System Library permitting to reduce the
development needs only to the core part connected to the specific
hardware device

EMBEDDED / CONTROLLED
DEVICES

CPU embedded devices

CPU controlled devices

complex IO controllers
PLC, DAQ (VME, PXI, etc)

PCs, arduino, rabbit, etc any
controller over eth.

...

...

...

DATA CATEGORIES AND
THROUGHPUTS

• data can be divided essentially in three different type:

• slow data (a few bytes @ Hz)

• eg: magnets, vacuum, temperature, etc

• fast data (Kbytes of bytes @ kHz)

• eg: BPM, beam lost monitor, luminosity monitor,
synchronized bump, etc

• very fast data (Mbytes @ GHz)

• eg: BPM single pass, scope, RF, etc

data bursted, limited
by hardware and

software dead time

continuos data

DATA LOAD ESTIMATION

just an exercise...

SYSTEM DATA FLOW

FRONT END

•CPU embedded devices
•CPU controlled devices
•Complex IO controllers PLC, DAQ (VME, PXI, etc)

The Control Unit (CU) is the user software (driver) to be interfaced
with the Control Library (CUCL) a multi task process that provides:
•to handle input (command) and output (readout) data;
•to initialize and configure data flow (type, frequency, etc)

the front end gets device configurations from the meta data
server where in mean time it auto-configure all data semantics and
syntax

CONTROL UNIT DATA FLOW

LIVE CACHE AND HISTORY DB

Data acquired by CU (cu clock) are updated in two no
relational DB (key/value):

•live-cache (live clock)
•history (history clock)

for bought the solutions, candidates under tests are two free
open-source software: MongoDB - from "humongous" - is a
scalable, high-performance, open source, document-oriented
database & Memcached a free & open source, high-
performance, distributed memory object caching system

USER INTERFACE TOOLKIT

The User Interface Toolkit (UITK) retrieves all
configuration information to access data and control devices
from the Metadata Server previously updated by front
end; The Graphic User Interface provides the live and archived
data representation and correlation

command to CU

live cache

history DB
config data

TIMING

• TAG events data with µs precision

• synchronize (jitter) data with ps precision

• allows maximum repetition rate with a minimum dead time
respect to accelerator event determinate by injection frequency 100
Hz

HOW TO TIMING DATA

• any controller/device is NTP/PTP synchronized

• a timing system distribute and provide hardware trigger
(TTL/NIM) to any different controller/device needs a timing accuracy
greater then milliseconds

• PRE TRIGGER command mask configure controllers/devices to
execute a specific task and pre configure the timing controller to
dispatch a specific mask to the controllers/devices.

• any pre trigger mask is flagged with a specific timing TAG

• TRIGGER command to timing controller latch time stamp and send
hardware trigger to controllers/devices

• data from controllers/devices and timing controller are updated
with their own duty cycle in the live/history data

DAQ TIMING FLOW

construct
command

add tag

send tag and pre trigger

construct
command

send trigger

GUI TIMING CU

configure
trigger mask configure daq

process

configure daq
process

configure daq
process

CUs ...

...

start hardware
trigger

start daq
process

start daq
process

start daq
process...

store ack in
live mem store ack in

live mem

store ack in
live mem

store ack in
live mem

wait for
acknowledge

from live mem

store time

store data

store data
store data...

end

CONCLUSION

• Controls R&D, based on this new concepts and on the knowhow
of INFN accelerators personnel, started - see next talk - and we
are open to match and integrate new and different idea

• Accelerators computing infrastructure is under design,
and need to be soon interface with the experiment and integrated
with diagnostics, timing and by further scientific hints

• We are working to expand the community of people
interested in developing computing infrastructure, codes, controls and
diagnostic, drivers, etc.

SPARE

RELATED TASKS
• computing interface

• logbook & trouble ticket

• data presenter & web tools

• security

• data server, processing, access

• Electronic Management Data System

• Project Management Data System

• Remote Control Room

RELATED TASKS CONT.

• Front end drivers and CU development

• User Interface

• High Level Software

• Accelerator Simulation codes

• Accelerator code interface vs control system

RELATED TASKS CONT.

• timing system

• custom or adapted choice (white rabbit or similar)?

• requirements and/or R&D needed

• coordination with diagnostics, controls system, experimental group

• interface vs subsystems (PLC, field bus, etc)

RELATED TASKS CONT.

• diagnostics

• requirements and R&D

• custom, adapted and commercial choices

• coordination with timing and controls system

• feedback systems
(longitudinal/transversal/luminosity/orbit, etc)

RELATED TASKS CONT.

• luminosity monitor

• radio frequency system

• injection system

• magnets & power supply

• vacuum system

• cooling system

• cryogenic system

