Computing: Status and Perspectives

Eleonora Luppi Ferrara University & INFN for the SuperB Computing Group

XVII SuperB Workshop and Kick Off Meeting La Biodola, Isola d'Elba, Italy

Computing Parallel sessions

Monday 30 May 2011

08:30->10:30 Parallel Det+Comp: FullSim & Backgrounds (Convener: E Perez (<i>Pl</i>), Andrea Di Simone (<i>ROMA2</i>)) (Sala Bonaparte 1)	Eugenio Paoloni (<i>Pl</i>) , Luis Alejandro Perez	
08:30 Bruno developments (20')	Andrea Di Simone (ROMA2)	
08:50 SVT backgrounds and ETD rates (20')	Riccardo Cenci (<i>PI</i>)	
09:10 DCH background report (20)	Dana Lindemann (McGill University)	
09:30 FTOF background report (20')	leonid Burmistrov (LaL)	
09:50 EMC background report (20)	Stefano Germani (PG)	
10:10 IFR background report (20)	Valentina Santoro (INFN Ferrara)	
Tuesday 31 May 2011		
08:30->10:30 Parallel Comp. Distributed Computing (Convener: Armando	Follo (DI) Luca Tomaccotti (EE)) (Sala	

08:30->10:30 Parallel Comp: Distributed Computing (Convener: Armando Fella (*PI*), Luca Tomassetti (*FE*)) (Sala Bonaparte 1)

08:30	Bookkeeping and submission tools prototype (20')	Luca Tomassetti (FE)
08:50	Distributed system status (20')	Armando Fella (<i>PI</i>)
09:10	Software installation in distributed environment (20')	Silvio Pardi (NA)
09:30	Production workflow optimization (20')	Andrea Di Simone (ROMA2)
09:50	Discussion (40')	

11:00->12:30 Parallel Comp: R&D Projects (Convener: Peter Elmer (*Princeton University*)) (Sala Bonaparte 1)

11:00 Test of the Liferay web portal (20)	Stefano Longo (PD)		
11:20 Many-core platforms and HEP experiments computing (20')	Davide Rossetti (ROMA1)		
^{11:40} A proposal for the distributed computing monitoring in SuperB (20')	Guido Russo (<i>NA</i>)		
Wednesday 01 June 2011			

08:30->10:30 Parallel Comp: Planning (Convener: Fabrizio Bianchi (TO)) (Sala Bonaparte 1)

XVII SuperB W	/orkshop a	nd Kick	Off Meeting
La Bio	dola, Isola	d'Elba,	Italy

2

Computing Outline

- Development and support of the software tools and of the computing infrastructure needed for carrying out the detector design and performance evaluation studies for the Detector TDR
 - FullSim (Bruno): detailed simulation based on the Geant4 toolkit.
 - Used to evaluate machine background rate and particle fluxes in different sub-detectors.
 - FastSim: a faster parametric simulation and reconstruction code that can be interfaced with the BaBar analysis code.
 - Used to evaluate the effect of different sub-detector options on a large set of physics analysis.
 - A suite of distributed computing tools that use the existing HEP Grid infrastructure for simulation production purposes
 - A release infrastructure and a set of collaborative tools to support day by day code development and documentation
- R&D program
 - Devoted to the completion of the Computing TDR (one year after the Detector TDR).

Full Simulation - Background

- The SuperB full Monte Carlo simulation code is a Geant4 based program called Bruno
- its focus was on the simulation of the machine background effects
- it reads from a GDML file a very detailed description of the detector elements and of the machine pipe from the two dipoles upstream the IP up to the two dipoles downstream the IP (+/- 15 m).
- it reads from a set of text files the magnetic field configuration and the machine optical parameters @ IP.
- A BBBrem primary generator embedded in Bruno generates the primary particles impinging on the pipe, then the Geant4 code simulates their interaction with the machine/detector material.
- Bruno can also take a snapshot of the background particles at the machine boundary to produce a "background frame" that can be superimposed on top of a "fast-sim" Physics event

E.Paoloni

The Geant simulation progr.

- The whole detector is modeled
- The beam lines and their magnets are modeled +/- 15m from IP
- Recent developments:
 - packaging

La Biodola, Isola d'Elba, Italy

- newest IR layout
- additional truth information

E.Paoloni

FullSim Recent activities: bug fixes I

Memory leaking

- The TClonesArrays that store the Monte Carlo truth information was not freed at the end of the event processing
- The leak was tolerable and was unobserved up to the previous production
- In this production the persistency of truth information in the final focus was turned ON
- The output file size jumped up from 13 MB/event to 117 MB/event
- hence the leak rate jumped up to 100 MB/event: all the jobs were killed by LSF: Max memory + swap size exceeded
- Riccardo Cenci spotted the bug and fixed it

E.Paoloni

FullSim Recent activities: bug fixes II

Observation from Dana Lindemann of a suspicious background depletion in the HER beam line

• Almost all (98%) the events of the last Frascati production were plagued by Geant4 error messages like:

ERROR - G4Navigator::ComputeStep() Track stuck, not moving for 25 steps

the error message was present on ~5% of the "Caltech" events

- This error triggers an event abort <u>before</u> the completion of the simulation of the whole stack of primary particles
- The partially simulated event is written on the Bruno output file
- The stack is assembled in such a way that on top there are the LER losses (going toward backward) and on the bottom there are the HER losses.
- Bruno is now instructed to be less harsh in the Track stuck exception handling: Abort rate in the latest production dropped back to 2%
 E.Paoloni

Full Simulation Packaging

Main activity in the past weeks was to complete the packaging of the "old" Bruno software dividing the code base into modular, self consistent units

- It helps code maintenance
- It helps code development: it enforces clear ٠ between different functionality, separation possibly handing over responsibility to different persons
- It encourages detectors to take more control of ٠ their own simulation, by creating detector-specific packages

Packaged version is now committed/validated, in sync with the "old" version

Feedback and bug fixes from production not included, though

Fast Simulation

Developed to understand the effect of design options on the final result of critical physics analyses

- Required to be several orders of magnitude faster than Geant4-based simulation
- Event generators are interfaced to simplified models of the detector geometry, materials, response, and reconstruction
 - On-peak BB events and continuum qq events generated with EvtGen and JETSET. KK and Tauola used for ττ events from polarized e₊e₋beams.
 - Cylindrical detector geometry around the solenoid B field axis.
 - Detector elements described as sections of two-dimensional surfaces.
 - Effect of physical thickness modeled parametrically.
 - Interactions of particles with matter are modeled using simplified crosssections. Electromagnetic and hadronic showers are parameterized
 - Tracking measurements are described in terms of the single-hit and two-hit resolution, and of the efficiency.
 - The Calorimeter response is modeled in terms of the intrinsic energy resolution of clusters as a function of the incident particle energy.
 - Hits and clusters from machine backgrounds are superimposed on top of physics events.

FastSim: Comparison with BaBar MC & Sample Result

Example of complex measurement simulated with FastSim: BF(B->K*vv)

Track impact parameter resolution FastSim vs Babar MC

FastSim of the detector recent activities

New tungsten shield

built from the new model in Bruno

- Simulation of backward EM calorimeter
 - Problem reported during the last workshop → reco efficiency underestimated. Now fixed.
 - 'September 2010' production affected

it is needed to evaluate the bwd EMC impact on physics

Attempts made to avoid running a new production (next slide)
XVII SuperB Workshop and Kick Off Meeting

FastSim of the detector recent activities

New particle generator

- It takes as input a list of MC 'truth' particles stored in input file
- It allows to re-simulate pre-selected events
- Developed in the attempt to 'bypass' the bwd EMC bug of the September 2010 production
- Examples of its use discussed at this meeting

Joint session with EMC

- Impact of backward EM calorimeter on Physics
- Impact of material on p0 reconstruction and efficiency

Tuesday 31 May 2011

Claudia Cec	17:30 Parallel: Joint detector geometry WG-FastSim-EMC session (Conchi (<i>PG</i>), Matteo Rama (<i>LNF</i>), David Brown (<i>Lawrence Berkeley National Lab</i>), Achille Stocchi (<i>LAL - Un S</i>)) (Sala Bonaparte 2)	
16:00	Impact of bwd EMC on Physics using the Sep2010 fastsim production (20)	ALEJANDRO PEREZ (PI)
16:20	updated study of HAD recoil B>K*nunubar vs bwd EMC (20)	Elisa MANONI (PG)
16:40	impact of fwd PID material on pi0 reconstruction (20)	Stefano GERMANI (PG)
17:00	Backward physics impact, B to tau nu (20')	Sasha RAKITIN (Caltech)
E. Luj	ppi XVII SuperB Workshop and Kick Off Meeting La Biodola, Isola d'Elba, Italy	12

M. Rama

Release infrastructure

- A software release is a set of software packages with well defined versions
- A package consist of a set of code for a particular task
 - with rules to build and define dependencies
 - in Software Release Tool (SRT) the building is done using GNUmake and the rules are defined in GNUmakefile files
- Between a given release and another a package might stay the same
 - the package version will remain the same
- Package versions are defined within the Subversion repository
- External software dependencies are managed by SRT
 - Geant4 dependency is handled through this mechanism
- SuperB software is packaged with RPM and distributed with yum, along with external software used by it, such as ROOT, Geant4, CLHEP, CERNLIB and Xerces-c.
 - To improve security, packages are signed in order to guarantee their origin.

R. Stroili

Repository structure

- Each package has its own structure
 - trunk
 - tags
 - usertags
 - Branches
 - Attic
- tagged packages are meant to be non modifiable code
 - code that is working at some level
 - the subversion repository forces this policy through some control when a commit is made
 - it shouldn't be possible to commit code changes to a tagged version

Software Release Tools

- Software Release Tools (SRT) are tools developed for BaBar and other experiments (CDF...) to simplify the code management/ development
- it helps building large projects keeping track of the version of the building blocks (the packages)
- in SuperB FastSim decided to use SRT and the code structure associated with SRT
 - as FastSim is build with several packages borrowed from BaBar it was a logical choice
 - the SRT system implemented in FastSim is different from the original one
 - based on subversion
 - simplified version
 - since the beginning SRT was thought as a temporary tool

Building Tools

- CMake was added as alternative build system (Makefile generator) to FastSim V0.2.7
 - Based on CMake 2.6 and available for build on SL4, SL5 (32 and 64 bit) and MacOS
 - It doesn't substitute but works in parallel with SRT
- First FullSim build with Cmake recently
 - Code "packaging" completed
 - Added a macro to manage Geant4 external libraries
- Provides Release and Debug builds
 - Still coupled to some SRT features
 - Build dependencies calculated starting from link_X.mk and bin_X.mk files
 - Management of placeholders for external libraries (ROOT, CLHEP) to be improved
- Extend build platforms as required
- Investigate automatic build frameworks

16

Distributed Production Infrastructure

- Designed a distributed computing facility exploiting the existing HEP Grid computing infrastructure worldwide
 - Current tools are for supporting the Detector TDR activities
 - R&D will be needed to have the final design
- The LCG Grid architecture was adopted
 - INFN-CNAF (Bologna) is the central site where Job Submission Management, Bookkeeping Data Base, and Data Repository would reside.
 - Jobs submitted to remote sites transfer their output back to the central repository and update the Bookkeeping Data Base containing all metadata related to the production input and output.
 - The system uses standard Grid services such as WMS, VOMS, LFC, StoRM, GANGA.
 - The EGI Workload Manager System (WMS) allows a job's progress through the different Grid middleware flavors to be managed transparently.
 - The job submission procedure includes a per site customization to adapt the job actions to site peculiarities: e.g. file transfer to and from three different data handling systems: StoRM, dCache, and DPM.

Distributed Framework design

- Central EGI service site
- Web Interface
- Job and metadata management tool for submissions
- Database system to store the distributed production metadata (bookkeeping)

XVII SuperB Workshop and Kick Off Meeting La Biodola, Isola d'Elba, Italy

Distributed Production Workflow

- Pre-Production
 - Input files and sw transfers to site SEs
- Job preparation
 - with the Framework Web Interface
 - launch of submission script from UI(automation, myProxy solution)
- GANGA bulk submission via WMS
- Output files transfer
- Metadata update

Automatic Grid Submission – Web Portal

myproxy-init -I LDAP_UID -d -a -n -t 24 -c 0

Production Tools allow Job preparation, bookkeeping updates, submission scripts generation

L. Tomassetti

XVII SuperB Workshop and Kick Off Meeting La Biodola, Isola d'Elba, Italy

SuperB remote sites

19 sites, three 'flavors' (EGI, OSG, WestGrid)

- Tier-1
- INFN-T1 (Bologna, Italy),
- IN2P3-CC (Lyon, France),
- RAL-LCG2 (Oxford, UK)
- Tier-2
- UKI-LT2-QMUL (London, UK),
- UKI-SOUTHGRID-RALPP (London, UK),
- UKI-SOUTHGRID-OX-HEP (Oxford, UK),
- GRIF (Orsay, France),
- SLAC (Stanford, USA),
- CIT-CMS-T2B / CIT-HEP-CE (Caltech, USA),
- OSC (Ohio, USA),
- VICTORIA-LCG2 (Victoria, Canada),
- INFN-BARI (Bari, Italy),
- INFN-CAGLIARI (Cagliari, Italy),
- INFN-FERRARA (Ferrara, Italy),
- INFN-LNL-2 (Legnaro, Italy),
- INFN-MILANO (Milano, Italy),
- INFN-NAPOLI (Napoli, Italy),
- INFN-PISA (Pisa, Italy),
- INFN-TORINO (Torino, Italy)

Distributed Computing recent activities

- Evaluation of Dirac system started
 - Study of the project
 - Testbed installation at CNAF
 - Focusing on the following use case first
 - Simulation Production
 - User interface, GANGA plugin
- SuperB sw installation procedure Grid based have been tested at CNAF successfully

Collaborative Tools

A set of computing tools to support day by day document and code development

- The SuperB web site (http://web.infn.it/superb/) is managed by the Joomla open source content management system
 - In addition a wiki site has been set up to permit the easy creation of web pages to be used as internal documentation
- A directory service based on LDAP application protocol has been set up to support the access to the collaborative tools through a single authentication and authorization interface.
- Alfresco has been chosen as document repository and management system.

Portal System

- Several collaboration tools are available to the SuperB community (websites, wiki, document management system...)
 -> some kind of consolidation would be desirable
- A portal system can solve this problem, providing all the collaboration tools to the users, within an homogeneous environment
- A prototype based on the Liferay Portal System is already online at CNAF (<u>http://lr.cnaf.infn.it:8080/liferay-portal</u>; access is granted to all SuperB users)
- The prototype hosts a copy of the collaboration website, plus some examples of application integration («Tools» page, with a group calendar, discussion forum, wiki and Alfresco document manager), to demonstrate how role based content delivery works (ACL) and what kind of consolidation is available
- We are investigating if Liferay may become the platform for future web application development

S. Longo

SSO and Central Authentication Service

- A portal system allows the aggregation of tools in a single site (consolidation). From the usage point of view, a Single Signon mechanism is needed to allow users to log into the portal and then employ the same credentials for the "aggregated" tools
- A central authentication service prototype that implements SSO (Jasig CAS) is online on the same machine hosting the portal, configured to bind users to the SuperB LDAP server
- Liferay portal and Alfresco document manager on lr.cnaf.infn.it are setup to validate users through the CAS server
- Jasig CAS provides libraries to authenticate Java, PHP, .NET and Apache applications, so we are evaluating it as a tool to implement SSO also for other SuperB web tools

Study of the Computing Model

- For the Computing TDR:
 - R&D projects. Most relevant:
 - Optimal exploitation of multi/many core system architectures, parallelize HEP applications
 - Distributed, fault tolerant data storage system
 - Grid/Cloud computing tools
 - All major design choices should be in place for TDR
- After the Computing TDR:
 - A preliminary version of a fully-functional offline system is built and validated via dedicated data challenges
 - The collaboration can start using it for detector and physics simulation studies
- Before the start of the data taking:
 - Further extensive test and development cycles to bring the system to its full scale
 - Acquisition and deployment of dedicated computing resources
 - Consolidation and validation of the distributed computing infrastructure

R&D Projects I

- After the first Ferrara SuperB R&D Computing Workshop, the Computing R&D group has written a document listing the baseline projects considered relevant for SuperB
 - It will be uploaded on Alfresco
- Recently we started to have regular bi-weekly meetings on R&D activities
- R&D projects are an opportunity to attract computing experts to SuperB
 - We'll try to exploits synergies with other experiments
- Next SuperB R&D Computing Workshop will be held in Ferrara on July 4-7
 - <u>www.fe.infn.it/superb11</u>
 - Participate!

R&D Projects II

- General Computing Requirements
 - cost/technology trends
- Software Development Model and Framework
 - Software build system, deployment, installation, programming languages, compilers/platforms and online/offline sharing
- Exploitation of multi/many core system architectures:
 - Benchmarking of HEP typical applications
 - Investigate possibility of exploiting LHC developments
 - Understand how to exploit different level of parallelism (event or more fine-grained)
 - Benchmark existing parallel HEP applications and investigate their use within SuperB
- User tools and interfaces

R&D Projects III

- Persistence, data handling models and Databases
- Distributed and large storage systems:
 - Testing new storage technologies and new infrastructure implementation
 - Wide Area Network distributed storage infrastructure
 - Affinity job scheduling
 - Effort mainly in data access (analysis use case) and data placement for a distributed Tier1
 - Technologies under evaluation: hadoop, lustre, xrootd, ceph
- Distributed computing:
 - Design a distributed computing framework, possibly fully integrated with national Grid initiatives
 - Support of multi-thread programming and distributed data storage
 - Integration of multi/many core CPU (and possibly GPU)
 - Support of Cloud and/or Grid infrastructures

Working Opportunities

We need **people**: groups are undersized and projects/plans/ideas are growing

Every aspect of the computing projects is tightly coupled to the others A short (and incomplete...) list of activities that need people:

- Full Simulation:
 - Core and sub-detector level improvements
 - Porting of Bruno to newer version of Geant
 - Sub-detector digitization
- Fast simulation:
 - subdetectors response development
 - physics tools development
- Reconstruction:
 - Framework and data structures
 - Sub-detector level code

- Data persistency:
 - Event Store
 - Condition and calibration data
- Bookkeeping
- Collaborative tools
- R&D projects
 - Exploitation of multi/many core system architectures
 - Distributed Storage
 - Distributed computing
 - Code development: languages, tools, standards and QA
 - User tools and interfaces

Credits

Many thanks to:

- F. Bianchi
- M. Corvo
- A. Di Simone
- A. Fella
- S. Longo
- E. Paoloni
- M. Rama
- R. Stroili
- L. Tomassetti
- R. Stroili

For their contribution