

Updates on the R&D for the SVT Front End Readout chips

F.M. Giorgi – INFN Bologna

Summary

- Strip readout architecture
 - Investigated architecture
 - Preliminary simulations
- INMAPS matrix submission
 - Readout post synth. simulations and bug fixing
 - Layout updates
- Test Beam 2011
 - New chips integration on DAQ electronics
 - Integration in the TDAQ software

Strip Readout Architecture

Preliminary studies

5/31/2011

Strip readout architecture under investigation

How many buffers? How many barrels?

Asynchronous logic assumed:

Triggered event size not known a-priori (thus readout time also)

Efficiency Study (by M. Villa)

- Parameter Space:
 - Trigger
 - frequency: 150 kHz (1.5 S.F)
 - jitter: 100 ns (the goal is to go down to 30 ns)
 - latency: 10 us (1.7 SF; LVL1 design is 6 us)
 - DAQ window: 100ns +2 Time stamps or 300 ns
 - Time stamping: 33 MHz (T(BCO)=30 ns)
 - Chip readout clock: 66 MHz (T(RDclk)=15 ns)
- Strip dead time equal to 2.4 peaking time
- Strip rates as given by Riccardo C. (5/13/11)
- High level simulation (C++) of MAIN features of a readout chip: Preliminary Toy Monte Carlo

L1 simulation: 687 kHz/strip

Inefficiency sources: Analog peaking time and limited buffer size.

Strip chip: how many barrels ?

Inefficiency sources: Analog peaking time, limited buffer size, sparsification time.

INMAPS 32x32 Matrix Submission

July 2011

5/31/2011

The project

- CMOS 180 nm, 4-well process
- INMAPS pixel sensors (ref. to V. Re presentation)
- 32x32 pixels matrix (F. Morsani)
 - Column addressable with in-pixel TS selection
 - Parallel output
- Integrated readout, SQUARE architecture:
 - Synthesizable VHDL architecture model.
 - 2 sub-matrices control with parallel hit extraction
 - 1 column sparsification in 1 clock.
 - Cluster compression algorithm
 - Triggered and Data push working mode
 - Parallel output.
 - I2C-like slow control.

Implementation Updates:

Post-synthesis Simulations

- Hit-by-hit cross-checking
- Apparent hits mismatch, hit logger fixed.
- Fixed matrix mask setting procedure (hold violations prevented the masks to set properly)
- Now behavioral and post synthesis simulations are in good agreement.

Simulation check tools

- Several debug tools were developed during last years to help the simulation checks compatible with all the architecture kind of data and with adjustable matrix size
 - VHDL Monte Carlo generator based on physics simulation parameters with efficiency estimations (latched hits/ generated hits)
 - Hit X-check (latched hits/readout hits)
 - Event display
 - Cluster analysis

After a fine tuning, they have been run also on post-synthesis simulation data and we found them very useful, again.

Readout hit dispersio

Implementation Updates: Layout

- The fixed revision of readout has been synthesized.
- The layout phase has started with encouraging results.
- Received the Matrix Object. To be placed.
- Placing and routing ~ 35 k cells.

CERN Test Beam September 2011

Bologna Updates

5/31/2011

DAQ electronics

- 2 EDRO boards
- 2 EPMC for each EDRO

- New flexibility required respect to 2008 test beam, different pixel chips with different readout implemented to be tested simultaneously.
- 2 Strip modules for each EPMC (4 sides)
- 6 FSSR2 chips for each strip module (same as sept. 2008)
- 1 EPMC devoted to DUTs to be chosen from:

 EPMC_PIXEL: 2 data channels for DIGITAL pixels –
 EPMC_STRIP: 4 data channels for striplets/ strips
- Analog structures take another way to tape.

DAQ scheme (EPMC_PIXEL)

EPMC firmware test Basic SPX0 communication

Tested SPX0 I2C communication with new EPMC firmware.

> In figure 600 kHz, tested OK up to 1.2MHz

F.M.Giorgi – XVII SuperB Workshop - La Biodola Isola d'Elba

TDAQ integration

- The new EPMC modular firmware for pixels established new TDAQ control interfaces
- Integration of the new interfaces in software started.
- Integration in the GUI configurator started as well.
- Perugia people now in Bologna integrating in the global TDAQ
- Remotely operable table received from Torino, now in Bologna for the July tests. New movt. features to be added in automatic logs.

Conclusion

- Mini Monte Carlo on proposed striplets readout architecture pointed out (L>=1):
 - Required buffer depth depends on peaking time, 20 is enough for a 50 ns peaking time.
 - One ore few barrels are enough
 - Clusters helps: clustered events require shorter buffers
- INMAPS submission
 - Some bugs fixed after post-synthesis simulations (the majority in the test bench code, rather than in the readout core)
 - Layout implementation started
- September Test Beam
 - New EPMC firmware deployed
 - Communication tests successful with SPX0 chip.
 - TDAQ software integration started .

5/31/2011

5/31/2011

M. Villa

Efficiency vs Peaking time

Strip Rates

• Strip rates as given by Riccardo C. (5/13/11):

new values

- L0: 2060 kHz/strip
- L1: 687 kHz/strip
- L2: 422 kHz/strip
- L3: 325 kHz/strip
- L4: 47 kHz/strip
- L5: 28 kHz/strip

old values

~ =

(268 kHz/strip) (179 kHz/strip) (52.5 kHz/strip) (21.9 kHz/strip) (18.7 kHz/strip)

M. Villa

Max peaking times (ns) at fixed strip efficiency

Target strip efficiency		97.6%	95%			91%
	SF=5	SF=1	SF=5	SF=1	SF=5	SF=1
LO	5	25	10	52	19	95
L1	15	74	31	156	57	286
L2	24	120	51	253	93	466
L3	31	156	66	329	121	605
L4	215	1077	455	Max	836	Max
L5	361	1807	763	Max	1403	Max 🔒

L4: 47 kHz/strip but longer deadtimes

enough. The dominant parameter is the analog dead time.

5/31/2011

M. Villa

Hits in triggered BCO

Hit multiplicity in Trig BCOs

L1: 687 kHz/strip

M. Villa

Efficiencies vs rate and dead times

Layer	С _D [рF]	t _p [ns]	ENC from R _s [e rms]	ENC [e rms]	Hit rate/strip [kHz]	MMC Efficiency
0	11.2	25	220	680	2060	(0.732)
1	1 26 7	50	650	1190	C0 7	0.917
1	26.7	100	460	930	- 687	0.841
2	31.2	50	830	1400	422	0.948
3	45.8	50	1480	2130	325	∕ 0.960
4	52.6	1000	340	820	47	0.893
5	67.5	1000	500	1010	28	0.934

Pessimistic: Cluster size 1, no charge sharing, worst peaking time

Conditions: 20 buffers, 150 kHz trigger rate, 300 ns time window for all layers. Buffer overflow on Layer 0

5/31/2011