

Marcello A. Gíorgí Uníversítà dí Písa & INFN Písa La Biodola May 30, 2011 XVII SuperB Workshop and Kick off Meeting

SuperB is a Super Flavor Factory

High statistics production of $b \bar{b} , b \bar{b} , \tau^+ \tau^-$ pairs. Follow the high intensity route to New Physics , look at signals through high precision measurements in Flavor/

Toward New Physics

- 1. Explore the origin of CP violation
 - Key element for understanding the matter content of our present universe $ie^{-2i\varphi_M}$
 - Established in the B meson in 2001
 - Direct CPV established in B mesons in 2004
- 2. Precisely measure parameters of the standard model
 - For example the elements of the CKM quark mixing matrix
 - Disentangle the complicated interplay between weak processes and strong interaction effects
- 3. Search for the effects of physics beyond the standard model in loop diagrams
 - Potentially large effects on rates of rare decays, time dependent asymmetries, lepton flavour violation, ...
 - Sensitive even to large New Physics scale, as well as to phases and size of NP coupling constants

Physics programme in a nutshell

- Versatile flavour physics experiment
 - Probe new physics observables in wide range of decays.
 - Pattern of deviation from Standard Model can be used to identify structure of new physics.
 - Clean experimental environment means clean signals in many modes.
 - Polarized e^{-} beam benefit for τ LFV searches.
 - Best capability for precision CKM constraints of any existing/proposed experiment.
 - Measure angles and sides of the Unitarity triangle
 - Measure other CKM matrix elements at threshold and using $\boldsymbol{\tau}$ data.

B_{u,d} physics: Rare Processes and Precision Measurements

- Goal: Reveal presence of New Physics (NP) using two-pronged attack:
 - Search for Rare Processes: NP contributions can be as large as Standard Model ones
 - Large sensitivity to NP
 - Ability to distinguish among NP models
 - Make Precision Measurements of many quantities: over constrain the Standard Model predictions
 - NP will often lead to discrepancies in global analyses of measured processes

will build on experience of current Bfactories.

CKM constraints

measures the sides and angles of the Unitarity Triangle (UT)

- Many measurements constrain the sides and angles of the UT: the SM predicts that all measurements "intersect" at apex of the triangle
- When NP is present, the measurements do not yield a unique apex, but you need the high precision of a Super Flavour Factory.

ō

B_{u.d} physics: Rare Decays

• $Run_{\beta\gamma=0.238} \alpha T(4S)$: $\mathcal{L} = 10^{36} \text{ cm}^{-2} \text{ sec}^{-1}$; $\int \mathcal{L} dt = 75 \text{ ab}^{-1}$ at the $\Upsilon(4S)$

✓ Large improvement in D⁰ mixing and CPV: factor 12 improvement in statistical error wrt BaBar (0.5 ab^{-1});

✓ time-dependent measurements will benefit also of an improved (2x) D⁰ propertime resolution. [\approx 1KHz of c c]

Unique feature of SuperB

- Run at $\psi(3770)$: $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{ sec}^{-1}$; $\int \mathcal{L} dt = 500 \text{ fb}^{-1}$ at the $\Psi(3770)$
 - ✓ $D\overline{D}$ coherent production with 100x BESIII data and CM boost up to $\beta\gamma$ =0.9; ✓ almost zero background environment;
 - ✓ possibility of time-dependent measurements exploiting quantum coherence.

Sensitivity projections with 75 ab^{-1} at $\Upsilon(4S)$

Charm at DD threshold

- Almost zero background analyses: search for rare/forbidden decays, precise measurement of relative D⁰-D⁰ strong phases, search for CPV in wrong sign (WS) semileptonic (SL) D⁰ decay modes.
- Unique possibilities of time-dependent measurements at DD threshold currently under study:
 - coherent production allows time-dependent measurements also withCPtagged events;
 - CP, T, CPT conservation tests similar to those in $K^0-\overline{K}^0$ and $B^0-\overline{B}^0$ systems;
 - measure of the unitarity triangle in the Charm sector.

Time dependent measurements at the $\Psi(3770)$ (same as for Y(4s))

minimum boost needed to achieve the required Δt resolution

Experimental considerations of running at DD threshold with boost

- Pro:
 - Very clean environment, backgroud extremely low;
 - Quantum coherence: mixing and CP, T, CPT analyses;
 - Access to D⁰-D⁰ relative phases and possibilities of timedependent Dalitz plot analyses with a model independent approach;
 - Systematic errors reduction due to background and Dalitz model uncertainties;
- Cons:
 - Time-dependent measurement require larger CM boost compared to the B⁰-B⁰ case to achieve adequate time resolution;
 - reconstruction efficiency decreases with large CM boost. Need to optimize the boost value.

• Two improvements in mixing precision come from threshold data: CAVEAT: NO TIME-DEPENDENT STUDIES INCLUDED YET

Measurements with Polarization

Precision Electroweak

• $sin^2\theta_w$ can be measured with polarised e⁻

Measure LR asymmetry in

at the $\Upsilon(4S)$ to same precision as LEP/SLC at the Z-pole.

Can also perform crosscheck at $\psi(3770)$.

Is this measurement also possible with Charm?

- 1. @ Y(4S). But hadronization correction.
- 2. Operate at a ccbar vector resonance above open charm threshold $\Psi(3770)$, use the same analysis method as for b.

Polarization at low energies with high luminosity is needed

That is included in the SuperB design

Polarization: a tool to handle and reduce Background

$\tau \rightarrow \mu \gamma$:Bkg extrapolation (using BaBar analysis)

BaBar expects 5.1 events in the 2σ signal region

1.7 from lepton tags 1.4 from 3 hadron tags 2.0 from π + ρ tags

96% comes from real τ decays (86% from $\mu\nu\nu\gamma$)

Background from taus is considered irreducible Bkg extrapolated to SuperB gives 300 events in the signal box. It can be reduced thanks to: Improved resolutions Improved EMC coverage ~250 events expected

Need to reduce backgrounds to an acceptable level to scale better than \sqrt{L}

Polarized beam and tag on leptons and on hadrons $(t \rightarrow p n / t \rightarrow r n)$ reduces irreducible background!

B physics @Y (4S)

Variety of measurements for any observable

Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})	Observable	B Factories (2 ab^{-1})	Super B (75 al
$\sin(2eta)~(J/\psi~K^0)$	0.018	0.005 (†)		04	
$\cos(2\beta) \; (J/\psi \; K^{*0})$	0.30	0.05	$\rightarrow \mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$\sin(2\beta) \ (Dh^0)$	0.10	0.02	$\blacktriangleright \mathcal{B}(B \to \mu\nu)$	visible	5%
$\cos(2eta)~(Dh^0)$	0.20	0.04	$\blacktriangleright \mathcal{B}(B \to D\tau\nu)$	10%	2%
$S(J/\psi \pi^0)$	0.10	0.02			
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \rho \gamma)$	15%	3% (†)
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	$\mathcal{B}(B \to \omega \gamma)$	30%	5%
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A_{CD}(B \to K^* \gamma)$	0.007 (+)	0.004 († *)
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	$A = (R \rightarrow m')$		0.05
lpha (combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(D \rightarrow p\gamma)$	~ 0.20	0.00
$\gamma (B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	0.012 (†)	0.004 (†)
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed sta})$	tes) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody stat})$	tes) $\sim 9^{\circ}$	1.5°	$\rightarrow S(K_s^0\pi^0\gamma)$	0.15	0.02 (*)
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}\pi^{\mp})$	209	52			
		and the second	$A_{CP}(B \to K^*\ell\ell)$	7%	1%
$S(\phi K^0)$	0.13	$0.02\;(*)$	$A^{FB}(B \to K^* \ell \ell)_{S_0}$	25%	9%
$> S(\eta' K^0)$	0.05	0.01 (*)	$AFB(R \to Y \theta\theta)a$	2570	50%
$> S(K_s^0 K_s^0 K_s^0)$	0.15	0.02 (*)	$A (D \to \Lambda_s \mathcal{U}) s_0$	5070	370
$> S(K_s^0\pi^0)$	0.15	0.02 (*)	$ B(B \to K \nu \nu) $	visible	20%
$S(\omega K_s^0)$	0.17	0.03 (*)	$\rightarrow \mathcal{B}(B \to \pi \nu \bar{\nu})$	_	possible
$S(f_0K_c^0)$	0.12	0.02 (*)	I	Possible also at LHC	b
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~ /	Sin	nilar precision at LH	Cb
Weal (exclusive)	4% (*)	1.055 (a)	Example of «Su	uper B specifics »	
Vch (inclusive)	1% (+)	0.5% (+)	inclusive in addition to exclusive analyses		
V _{n.nl} (exclusive)	8% (*)	3.0% (+)	chopped with TO wie a mapy Ke		
V _{ut} (inclusive)	8% (*)	2.0% (*)		γ S, V, many i	× 5

physics (polarized beams)	Cha	arm at Y((4S) and thresh	old
Process Sensitivity	Mode	Observable	B Factories (2 ab ⁻¹)	$SuperB$ (75 ab^{-1})
$\mathbf{p}(\mathbf{x}) = 10 - 9$	$D^0 \rightarrow K^+ K^-$	y_{CP}	23×10^{-3}	$5 imes 10^{-4}$
${\cal B}(au o \mu \gamma) = 2 imes 10^{-s}$	$D^0 \rightarrow K^+ \pi^-$	y'_D	$2-3 \times 10^{-3}$	7×10^{-4}
${\cal B}(au o e \gamma) = 2 imes 10^{-9}$		$x_D^{\prime 2}$	$1-2 \times 10^{-4}$	3×10^{-5}
$R(\pi \to \mu \mu \mu) = 2 \times 10^{-10}$	$D^0 \rightarrow K^0_S \pi^+ \pi^-$	y_D	$2-3 \times 10^{-3}$	5×10^{-4}
$D(\gamma \rightarrow \mu \mu \mu) = 2 \times 10$		xD	$2-3 \times 10^{-3}$	5 × 10 ⁻⁴
${\cal B}(au ightarrow eee) = 2 imes 10^{-10}$	Average	УD	$1-2 \times 10^{-3}$ $2-3 \times 10^{-3}$	3 × 10 ⁻⁴
$\mathcal{B}(\tau \to \mu n) = 4 \times 10^{-10}$	$D^0 = V^+ -$	xp /2	2-3 × 10	3×10^{-5}
$\frac{\mathcal{D}(r + \mu \eta)}{\mathcal{D}(r + \mu \eta)} = \frac{1}{r}$	$D^* \rightarrow K^+ \pi$	$\frac{x}{u'}$		7×10^{-4}
$\mathcal{B}(au ightarrow e\eta) = 6 imes 10^{-10}$	$D^0 \rightarrow K^+ K^-$	y _{CP} 7	To he evaluated	5×10^{-4}
${\cal B}(au ightarrow \ell K^0) = 2 imes 10^{-10}$	$D^0 \to K^0_S \pi^+ \pi^-$	x	at LHCb	4.9×10^{-4}
		$\frac{y}{\left \frac{a}{n} \right }$	<i>w</i> 21100	3.5×10^{-2} 3×10^{-2}
	_	4/P φ		2°
B_s at Y(5S)	_			
	Ch	annel	Sens	itivity
Observable Error with 1 ab^{-1} Error with 30 ab^{-1}	D^{0}	$\rightarrow e^+e^-, D^$	$ \xrightarrow{\rightarrow \mu + \mu} \qquad \qquad 1 \times $	10-8
$\Delta\Gamma$ 0.16 ps ⁻¹ 0.03 ps ⁻¹	D^0	$\rightarrow n e^+ e^-, D^0$	$ \rightarrow \pi \mu^{+} \mu^{-} \qquad 2 \times $ $ \rightarrow \pi \mu^{+} \mu^{-} \qquad 3 \times $	10^{-8}
Γ 0.07 ps ⁻¹ 0.01 ps ⁻¹	D^0	$\rightarrow K^0_s e^+ e^-, L$	$D^0 \rightarrow K^0_s \mu^+ \mu^- \qquad 3 \times$	10^{-8}
β_s from angular analysis 20° 8°	D^+	$^{+} \rightarrow \pi^{+}e^{+}e^{-}, I$	$D^+ \rightarrow \pi^+ \mu^+ \mu^- \qquad 1 \times$	10^{-8}
$A_{SL}^{s} = 0.006 = 0.004$				
$\begin{array}{c c} A_{\rm CH} & 0.004 & 0.004 \\ \hline \mathcal{B}(B \longrightarrow u^+ u^-) & < 8 \times 10^{-9} \end{array}$	D^0	$\rightarrow e^{\pm}\mu^{\mp}$	1 ×	10^{-8}
$\frac{ V_{cl}/V_{cl} }{ V_{cl}/V_{cl} } = \frac{0.08}{0.017}$	D^+	$^+ \rightarrow \pi^+ e^\pm \mu^\mp$	1 ×	10^{-8}
$\frac{\mathcal{B}(B_s \to \gamma \gamma)}{\mathcal{B}(B_s \to \gamma \gamma)} = \frac{38\%}{38\%} = \frac{7\%}{7\%}$	D^0	$\rightarrow \pi^{\circ} e^{\pm} \mu^{+}$	$2 \times$	10^{-8}
$\beta_s \text{ from } J/\psi\phi$ 16° 6°	D^{0}	$\rightarrow \eta e^{\pm} \mu^{\pm}$	3 X 3 V	10^{-8}
$\beta_s \text{ from } B_s \to K^0 \bar{K}^0$ 24° 11°	D	$\rightarrow n_s e^- \mu^-$	3 ×	10
	D^+	$+ \rightarrow \pi^- e^+ e^+, I$	$D^+ \to K^- e^+ e^+ \qquad 1 \times$	10^{-8}
Bs : Definitively better at LHCb	D^+	$^+ \rightarrow \pi^- \mu^+ \mu^+, .$	$D^+ \to K^- \mu^+ \mu^+ = 1 \times$	10^{-8}

Exotic hadronic spectroscopy

Hints of a new type of particles with more than 3 quarks

B-Factories produced a lot of results but ...

Exotic hadrons @ SuperB

- Much larger statistics @Y(4S) needed
- High luminosity energy scan needed:
 - produce resonances
 directly (E~4-4.5 GeV)
 - Exploit recent evidence of exotic states produced at Y(5S)

and Panda :Hadron Spectroscopy e⁺e⁻ vs pp

e⁺e⁻ collisions

direct formation two-photon production initial state radiation (ISR) B meson decay

pp annihiliation

- + low hadronic background
- + high discovery potential
- direct formation limited to vector states
- limited mass and width resolution for non vector states
- high hadronic background
- + high discovery potential
- + direct formation for all (non-exotic) states
- + excellent mass and width resolution for all states

Parameter	Requirement	Comment
Luminosity (top-up mode)	10 ³⁶ cm ⁻² s ⁻¹ @ Y(4S)	Baseline/Flexibility with headroom at 4. 10 ³⁶ cm ⁻² s ⁻¹
Integrated luminosity	75 ab ⁻¹	Based on a "New Snowmass Year" of 1.5 x 10 ⁷ seconds (PEP-II & KEKB experience-based)
CM energy range	τ threshold to Y(5S)	For Charm special runs (still asymmetric)
Minimum boost	βγ ≈0.237 ~(4.18x6.7GeV)	1 cm beam pipe radius. First measured point at 1.5 cm
e ⁻ Polarization Boost up to 0.9 in runs at low energy under evaluation for charm physics	≥80%	Enables τ <i>CP</i> and <i>T</i> violation studies, measurement of τ <i>g</i> -2 and improves sensitivity to lepton flavor-violating decays. Detailed simulation, needed to ascertain a more precise requirement, are in progress.

SuperB Detector (with options)

END

SuperB Luminosity model

g-2 Reach (Valencia Report 2008)

 Δa_{μ} is not in good agreement with SM

Measuring differential cross section of tau production would lead to measurement of the real part of tau form factor.

We began considering 1-3 prong

whose experimental selection is cleaner

Need to tag the sample:

Lepton tag: higher purity & higher diluition (at least 3 neutrinos)

Hadronic tag: lower purity & lower diluition (2 neutrinos)

Systematics come mainly from tracking

Should be able to measure the

real part (0.75-1.7)x10⁻⁶

5/30/2011

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos(\theta)} = a \cdot \cos(\theta)^2 + b$$
$$a \propto \beta^2 |F_1|^2$$
$$b \propto (2 - \beta^2) \cdot |F_1|^2 + 4\mathrm{Re}[F_2]$$

EXPERIMENT	Cross Section	Normal Asymmetry
\downarrow	$\operatorname{Re}\left\{F_{2}\right\}$	$\mathrm{Im}\left\{ F_{2}\right\}$
Babar+Belle $2ab^{-1}$	4.6×10^{-6}	2.1×10^{-5}
Super B/Flavor Factory (1 yr. running) 15ab ⁻¹	1.7×10^{-6}	7.8×10^{-6}
Super B/Flavor Factory (5 yrs. running) 75ab ⁻¹	$7.5 imes 10^{-7}$	$3.5 imes 10^{-6}$

Questions

- * Are SuperKEKB and SuperB discovery machines in the LHC era ?
- * Why is a luminosity > 10^{36} required ?
- * Why LHCb is not enough for flavor studies ?
- * Is it important running at the charm/tau threshold ?
- * How important to have polarization ?

Future Super B Factories

	SuperB	Super KEKB
Peak Luminosity	>10 ³⁶	$0.8 \ge 10^{36}$
Integrated Luminosity	75 ab ⁻¹	50 ab ⁻¹
Site	Green Field	KEKB Laboratory
Collisions	mid 2016	2015
Polarization	80% electron beam	No
Low energy running	10 ³⁵ @ charm threshold	No
Approval status	Approved	Approved

Search for Dark Forces

Results from Pamela/Fermi: excess of positrons of astrophysical origin

→ Due to particles decaying into e^+e^- with m<2m_p?

SuperB Sensitivity to dark forces

Discovery modes:

Direct production

$\sum_{e^+}^{e^-} \sum_{\nu \to \nu} \sum_{\nu \to \nu} \sum_{\nu \to \nu} \alpha' \kappa^2$

