Report of Forward PID Taskforce

Members: C. Hearty, H. Jawahery, P. Lubrano, B. Meadow & M. Rama

Representatives of proponents: J. Va'vra (TOF), E.A. Kravchenko (FARICH), N. Arnaud, A. Stocchi (fTOF)

> XVII Super B Workshop Elba June 1, 2011

Hassan Jawahery University of Maryland

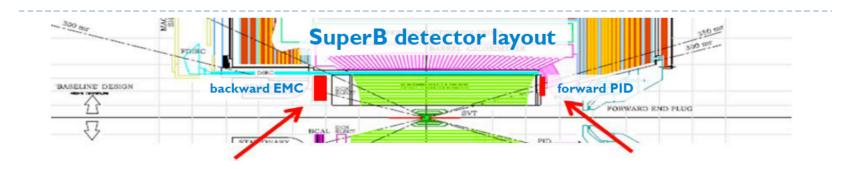
The charge

Charge to the SuperB Detector Geometry Selection Task Forces.

BR+FF, July 1, 2010

Several of the options described for the SuperB detector in the Conceptual Design Report of 2007 have now been resolved. However, as indicated in the Detector Progress Report of June 30, 2010, two major options remain that have a large impact on the overall detector system geometry, and therefore prevent us from defining final subsystem envelopes. Specifically, these open options are:

- 1. whether to include a hadronic PID detector in the forward region, and
- 2. whether to include an EMC in the backward region


As we believe it is crucial to be able to define these regions soon, and in any case before the TDR, we have decided to appoint two Geometry Selection Task Forces (one for the forward region and one for the backward region) to broadly investigate all issues involved and provide recommendations to the Techboard for final decisions.

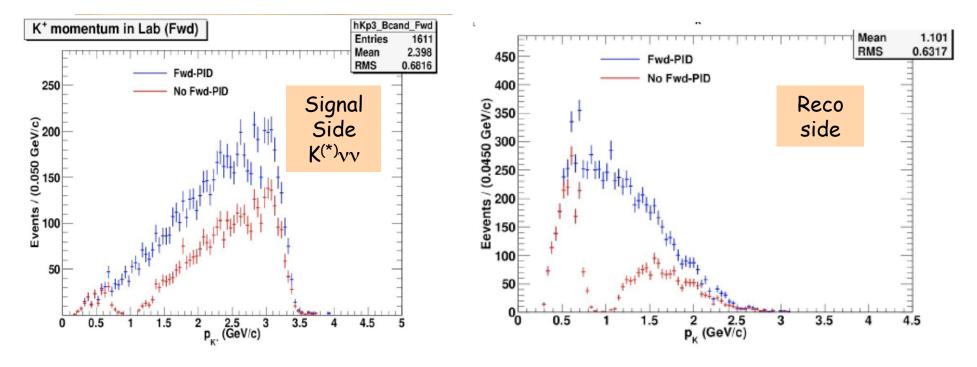
These Task Force committees are called (1) The Forward Geometry Selection Task Force, led by Hassan Jawahery, and (2) The Backward Geometry Selection Task Force, led by Bill Wisniewski. Other committee members are

The committees should make their recommendations based on a wise balance between all competing factors. These factors include, but are not limited to:

- 1. an evaluation of the physics impact of the inclusion of the device;
- 2. the impact of the material of the device on the performance of other subdetectors;
- 3. an evaluation of the technical performance of suggested devices, their maturity, the related risks, and the need for further R&D;
- 4. the impact on the overall detector structure and assembly procedures,
- 5. the cost of the device
- 6. the manpower needs and group strengths.

FPID- Geometry

Forward PID angular acceptance: $\theta = 17^{\circ} - 26^{\circ}$ (~5% CM of all tracks (if isotropic in CM))

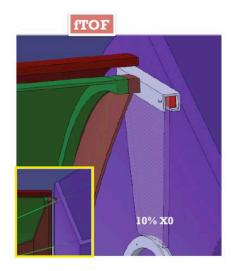

Other geometry related considerations Length of DCH Material & its distribution in front of Forward EMC

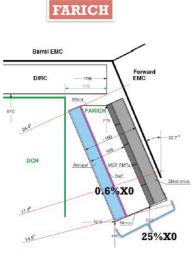
Proposed Candidate Technologies: Focusing RICH (FARICH) DIRC-like TOF (fTOF) (TOF resolution ~40 ps) Pixalated TOF (TOF resolution of ~100 ps)

Physics Impact

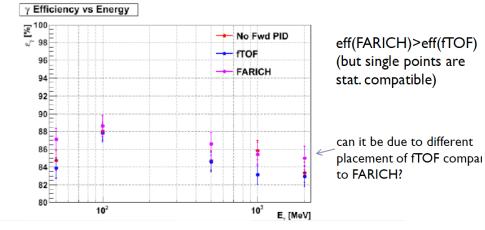
- The main physics gain is expected to be in improved K/π separation.
- Physics Gain evaluated using the benchmark modes:
 - B-> $K^{*0}(->K^{-}\pi^{+})vv$ + Reconstruction of other B
 - B-> τv + Reconstruction of other B
 - Other processes, including charmless B, tau and charm decays will benefit, but most are not statistic starved.
- Must also evaluate the adverse impact:
 - Performance of Forward EMC, due to the increased material in front.
 - Evaluated in terms of efficiency and resolution for $\gamma \ \& \ \pi^0$
 - Performance of DCH due to the shorter length in the forward section of the detector
 - Evaluated in terms of impact on momentum resolution

Physics Impact (Results)

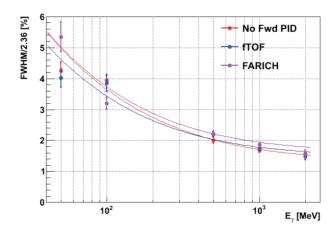



Conclusions for fwd TOF

- The results of the hadronic and SL analyses are overall consistent
 E. Manoni A. Perez
- 2.0-2.5% efficiency gain per identified K[±]
 - The efficiency of signal plus Breco tag increases by ~4.5% (~2.5%) when there is (not) a K[±] in the signal final state
 - ▶ The Breco tag background increases as well (~2.5%)
 - S/sqrt(S+B) increases by ~I-4 % depending on the mode


Physics - Impact on EMC

Fwd PID geometry options

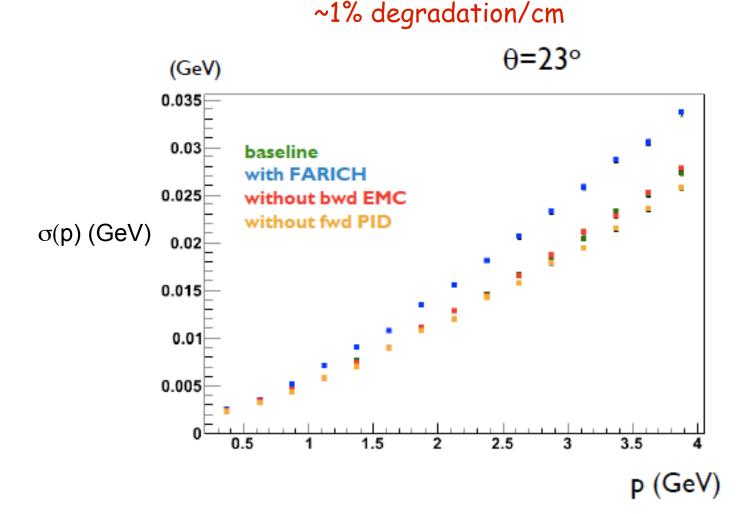


Fwd EMC γ Efficinecy

Fwd EMC Energy Resolution

Fwd PID Effects on EMC

- Y
- fTOF and FARICH effects on photons energy resolution are negligible
- FARICH effects on photon detection efficiency is negligible
- fTOF effect on photon detection efficiency is very small


П 0

- fTOF and FARICH effects on pions mass resolution are negligible
- fTOF and FARICH effects on pions detection efficiency is small

S. Germani

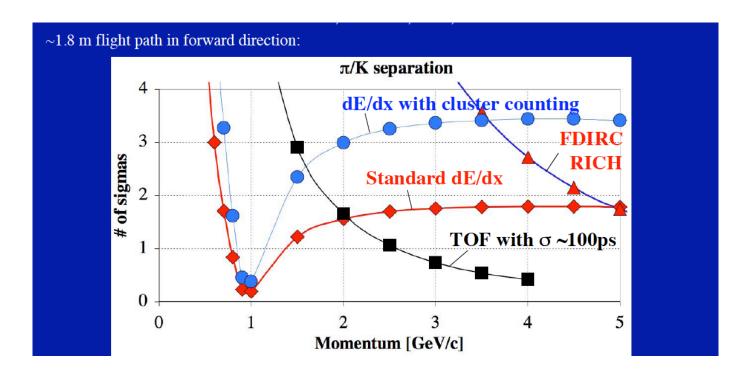
Physics- Impact on DCH

Impact of the change in DCH length on momentum resolution Degradation of momentum resolution for tracks in FPID region [FARICH (-17 cm): 17% & fTOF (-5 cm): 5%]

M. Rama

7#

Proposed Detector Technologies


Technology Evaluation parameters

- Proof-Of-Principle for each of the proposed technologies- at least with cosmic- ray tests, and if possible with beam tests.
 Issues common to all devices are:
 - Performance in presence of background.
 - The effect of magnetic field on photo-detectors and the overall performance of the device.
 - Aging of the photo-detectors
- Reliable estimates of cost, required manpower, and construction schedule for each of the proposed technologies. This includes, information on the availability of components on the time scale of SuperB construction schedule
- Integration

Pixelated TOF Option

•The Idea is to use the LYSO crystals of the FEMC as TOF countersread out with G-APD

•At 100 ps resolutions- this technique provides >3 sigma K/pi separation up to ~1.5 GeV- coverage in dE/dx hole (p~ 1 GeV) & complement dE/dx elsewhere

Pixelated TOF performance

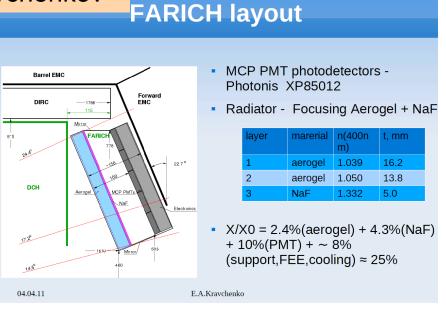
Jerry Va'vra: CR Studies performed at SLAC with 4x4 G-APD arrays

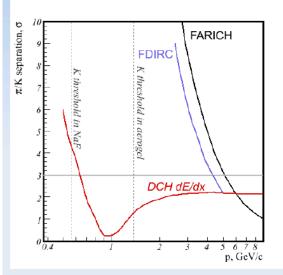
Conclusion

• Results so far:

Test	Radiator	Detector	Particle	Resolution
SLAC	Small LYSO 17mm x 17mm x 17mm	МСР-РМТ	CRT μ's	109 & 159 ps
SLAC	Small LYSO 17mm x 17mm x 17mm	G-APD array	CRT μ's	~ 140 ps
SLAC	Small scint. 17mm x 17mm x 17mm	G-APD array	CRT µ's	~ 136 ps
SLAC	Long LYSO 25mm x 25mm x 200mm	G-APD array	CRT µ's	~ 220 ps
Fermilab	Tiny LYSO 3mm x 3mm x 7mm	3mm ² G-APD	γ's from Co ⁶⁰	~ 155 ps
Pisa	Tiny LYSO 3mm x 3mm x 10mm	3mm ² G-APD	2γ's from Na ²²	~ 107 ps

• Still one more test is planned in CRT, but things do not look hopeful to me that we can achieve $\sigma \sim 100$ ps. But would like to go at it once more.


3/1/2011


J. Va'vra, Forward TOF with LYSO

12

Focusing RICH(FARICH) Option

E. Kravchenkov

 π/K separation of FARICH in comparison with FDIRC and DCH

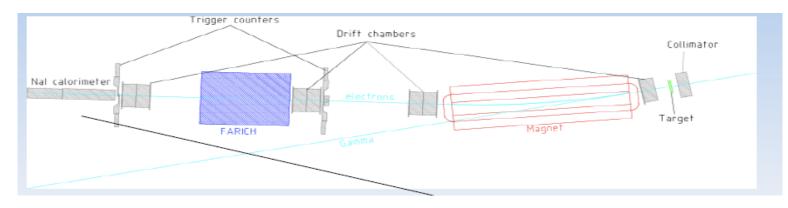
•Superior PID performance over other options

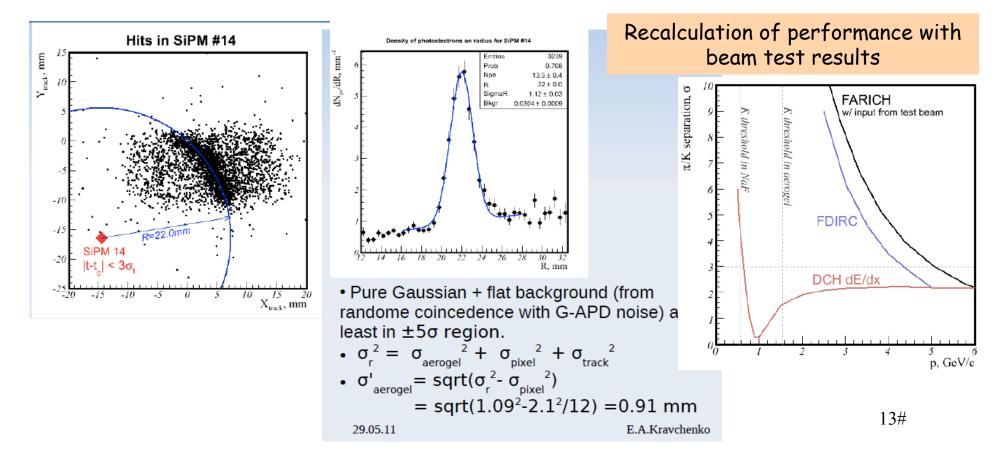
Robust with respect to background hits

- less than 1 hit/ Cherenkov ring
- PMT lifetime >7 yrs (at gain~5x10⁵ (?))

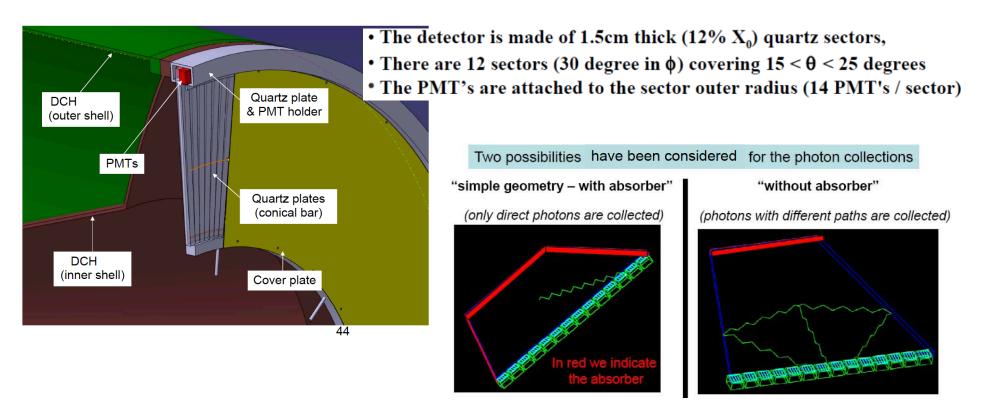
•Down side:

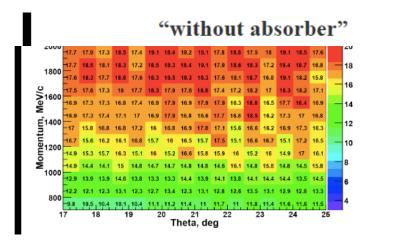
• Needs to cut ~17 cm from DCH is ~17 cm.

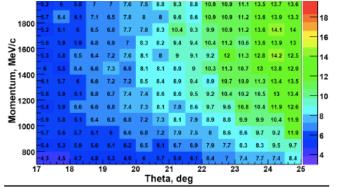

▶17% degradation of momentum resolution.

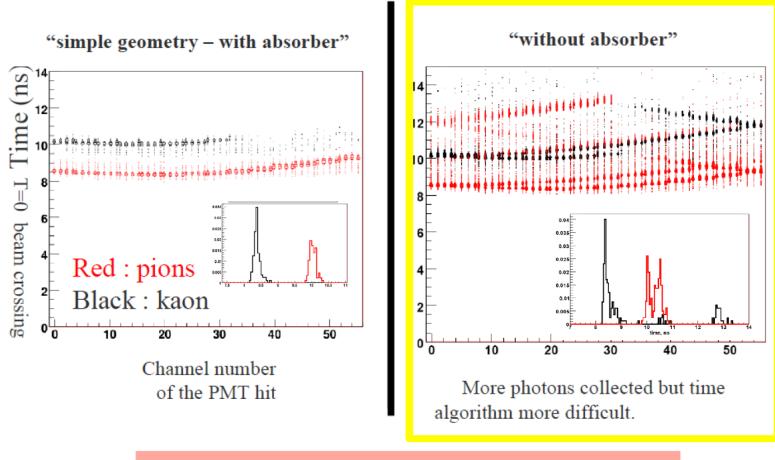

•material in front of EMC (25% X_0)

•Cost ~3.5 M Euro [dominated by PMT]

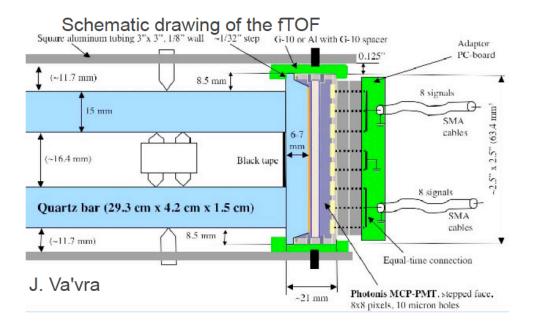

>Some uncertainties in availability of MCP-PMT's (10 μ m hole)

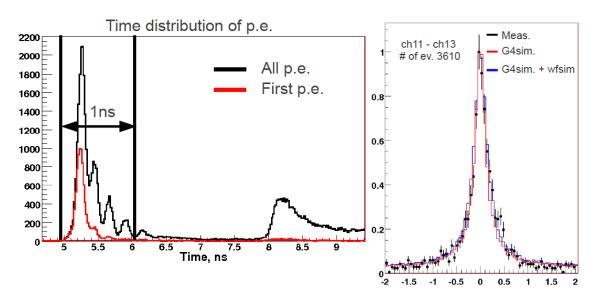

FARICH- beam test


Focusing TOF (DIRC-like TOF) Option


14#

"simple geometry - with absorber"


fTOF - expected performance

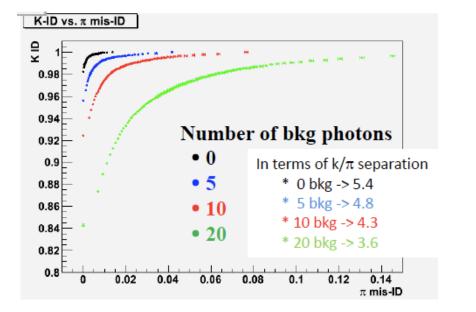

Photoelectron timing using tracks with P=700Mev, theta=17, phi=0

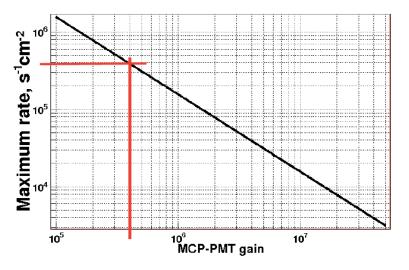
FTOF is a 2D device because it measures time vs position

fTOF performance at SLAC Cosmic Ray set up

• Two quartz bars connected to one Photonis MCP-PMT (8x8 channels, stepped face, 10 micron holes).

- Tube operate at -2.7kV (gain ~ 7.0x10⁵)
- 16 channels connected to the USBWC electronics developed by LAL electronics team
- Amplifiers (40dB)
- Filters (600MHz bandwidth)
- Another quartz counter used as trigger


•The narrow part of the distributions provides a measure of time resolution •~90 ps/hit


•Results reproduced in simulation, validating other simulation predictions

•At >10 p.e. they expect better than 40 ps resolution/track

fTOF performance (with BKG.) Simulation of radiative Bhabhas & fTOF with Bruno L.Bumistrov Most precise 460kHz/cm² Elba 2011 description of the ➔ 1.8 p.e in fTOF/bunch crossing machine

We can run tubes @ gain 4 *105 The study of the TTS of the SL10 at low gain is in progress at LAL test bunch.

Need verification in a full prototype

Maximum integrated anode charge for SL10-XM0027 : 2.5 C* (QE drop by 20%)

5 yrs PMT lifetime at 2.5 C maximum charge The maximum may be 1 C- needs further investigation

Other factors

- Cost:
 - fTOF ~2 M Euro [1.2 M for PMT]
 - FARICH ~3.5 M Euro [2.3 M for PMT] For comparison: Barrel focusing DIRC at ~ 10 M\$
- Integration:
 - These devices weigh ~100 Kg or less
 - Could be supported on Forward EMC (at ~4 Ton) or DCH
 - No serious work done on how to take services in and signals out.

Summary/Recommendation: Physics

- The gain from FPID is around 4-5% for best performance; Roughly 2%/Kaon. No physics channel with higher gain has been identified.
- Impact on EMC:
 - The results based on simulation and beam test [electrons at 1 GeV] show no significant degradation of resolution & efficiency for γ & π^0
- Impact on Tracking resolution due to shortened Drift chamber:

~1% degradation in momentum resolution/cm cut from DCH

Summary/Recommendations: FARICH

- On the whole this technology is likely to yield the most powerful PID performance- and robust- extending well above the nominal 4 GeV for the B decays. The expected performance is also verified by impressive beam test results. [However, we have not identified any physics channel that would significantly gain from the extended performance.]
- The required cut of ~17 cm to DCH length significantly degrades momentum resolution in this angular region. This, in the opinion of the taskforces members, is an unacceptably large negative impact on the detector performance and too severe constraint on the tracking system. Hence, the taskforce does not see this technology appropriate for Forward PID in the SuperB detector.

Summary/Recommendations: Pixalated TOF

This technique, due to its potential minimal disturbance on the rest of the detector and likely modest cost, was deemed very attractive. At the aimed resolution of ~100 ps, it would complement the dE/dx measurements for π/K coverage below 2 GeV. However, with the obtained time resolution for a full size LYSO in CR tests at ~230 ps, the proponent (Jerry) & taskforce have concluded that this technique will not deliver the required performance for this task.

Summary/Recommendations: Focusing TOF

- Simulation studies & cosmic ray tests have demonstrated that key aspects of this technique can be attained- including time resolution of ~90 ps/hit.
- There remains significant uncertainties on the expected background level and its impact on PMT lifetime.
- The taskforce believes this technique could be appropriate for the Forward PID system provided:
 - Background issues are understood- which may require further studies of the IR design and shielding
 - A full prototype of the system is developed and tested, to verify the expected performance, in particular the pattern recognition in presence of background hits.

Summary/Recommendations

• The importance of hermeticity [and redundancy] in PID coverage will increase as we approach systematic dominated era in the SuperB physics program. Hence, the taskforce members believe- independently of the outcome of the current technology evaluation- that there is physics merit to allowing a gap in the forward region for a Forward PID device as an upgrade option.