BTF testbeam simulation

SuperB EMC meeting

XVII SuperB Workshop and Kick Off Meeting
La Biodola (Isola d'Elba)

29/05/2011

S. Germani

Outline

Simulation description

Beam position tuning

Not completely known effects study

Conclusions

Simulation description

- The simualtion geometry is as realistic as pssible
 - Exact size projective crystals
 - Glass fiber structure
 - Silicon detectors and boxes
 - Plastic scintillators (scintillating fibers counters)
- Simulated effects
 - Shower development form G4
 - Photostatistic smearing with light yield from measuremnts
 - LY longitudinal non uniformity from measuremnts
 - Signal cross-talk from measuremnts
 - Intercalibration error
 - Beam energy spread
 - Electronic signal shape, amplitude and noise
- Signal extraction
 - All DATA and MC results are obtained with signal extracted taking the ADC sample with the maximum value

Data CoG vs Silicon position

Crystal energy center of gravity shows good correlation with silicon position measurement

The CoG can be effectively used to find the correct MC beam position

Beam profile - CoG

CoG: DATA - MC

Data –MC Energy Center of Gravity (CoG) comparison No Silicon selction on Data

CoG: DATA Si selected - MC

Data –MC Energy Center of Gravity (CoG) comparison Silicon selcted Data \rightarrow MC spot dimensiion and position need retuning!

Pedestal oscillations

Simulated pedestal has stronger variability than data

The simulated pedestal fluctuations have negligible effect

Not used for default simulation

Light yield longitudinal non-uniformity

Crystal longitudinal light yield non-uniformity is simulated.

Compare:

- →All crystals @ 4.5%
- →Ren-yuan measured non-uniformity with 15 mm black paint
- →2 x Ren-yuan measured values

Non negligible effect

Not enough to explain the full DATA-MC difference

Crystal intercalibration error

Crystals intercalibration error is simulated.

Compare

- $\rightarrow 1\%$
- **→** 3%
- **→** 5%

Non negligible effect

Preliminary intercalibartion error estimation : ~ 1 %

Beam energy spread

Gaussian beam energy spread is simulated Copmare: $0 \rightarrow 3\%$ spread

Energy resolution fit

 $\sigma(\mathbf{E})/\mathbf{E} = \mathbf{p0}/\sqrt{\mathbf{E}(\mathbf{GeV})}$ (+) $\mathbf{p1}/\mathbf{E}(\mathbf{GeV})$ (+) $\mathbf{p2}$

Conclusions

 No single realistic effect can account for DATA_MC discrepancy

Disagreement larger at low energies

 Realistic evaluation of intercalibration error and beam spread vs E is fundamental