

Exclusive $B \rightarrow K^{(*)} \ell^+ \ell^-$

- BABAR reconstructs $B \rightarrow K^* \ell^+ \ell^-$ in 10 exclusive final states, K⁺, K⁰₅, K⁺π⁻, K⁺ π⁰, K⁰₅ π⁺ recoiling against e⁺e⁻ or $\mu^+\mu^-$
- The data have been plotted in 2 bins of q² low q²: 0.1≤ q²≤7.02 (6.25) GeV², reduced q² for angular analysis high q²: 10.24≤ q²≤12.96 GeV² & q²≥14.06 GeV²
 - ⇒ for angular analysis low q^2 region is reduced to minimize leakage from B→J/ ψ K^(*) and B→ ψ (2S)K^(*) PRL 102, 091803 (2009),

PRD 79, 031102 (2009)

- At SuperB we will use the same modes
- I will use BABAR data for extrapolation, since the SuperB detector is based on the BABAR detector and we understand both statistical and systematic errors

Event Statistics in 6 q² Bins

- Number of events in BABAR for 425 fb⁻¹ and extrapolations to 75 ab⁻¹
- Number of events measured in q_{low} and q_{high} are redistributed to the 6 q² bins

	BABAR	SuperB
q _{low}	42.9	7571
q high	53.7	9476
q ₁	11.8	2077
q ₂	9.5	1678
q ₃	21.6	3815
q ₄	25.2	4444
q ₅	15.2	2676
q ₆	13.4	2357

A_{FB} in $B \rightarrow K^* \ell^+ \ell^-$

Scale statistical error by sqrt(75,000/425)

Distribute errors measured in q_{low} into q_1 , q_2 , q_3 and in q_{high} into q_4 , q_5 , q_6 by weighting with decay rate

WESSIE.	BABAR	BABAR	SuperB	SuperB						
q _{low}	-0.23	0.18	-0.014	0.011						
9 _{high}	-0.32	0.52	-0.020	0.032						
q ₁	-0.37	0.29	-0.028	0.022						
q ₂	-0.4	0.31	-0.03	0.023						
q ₃	-0.26	0.21	-0.02	0.015						
q ₄	-0.38	0.62	-0.029	0.047						
q ₅	-0.49	0.8	-0.037	0.06						
96	-0.52	0.85	-0.039	0.064						
G.	G Figen SuperB Elba 31-05-2011									

A_{FB} Systematic Errors in $B \rightarrow K^* \ell^+ \ell^-$

- Look at systematic uncertainties in q_{low} and q_{high}
- Guess improvements of each contributions at SuperB
- Estimate is conservative
- Expect systematic uncertainties of
 <0.027 for q_{low} and
 <0.036 for q_{high}

	q _{low}	111 1115	q _{high}	
	BABAR	SuperB	BABAR	SuperB
Total sys	0.052	0.027	0.074	0.036
m _{es} fit	0.003	0.003	0.002	0.002
F _L fit	0.025	0.012	0.022	0.011
Bg shape	0.017	0.01	0.021	0.11
Signal mode	0.03	0.015	0.038	0.019
Fit bias	0.023	0.013	0.052	0.025
Mis-reco	0.02	0.01	0.02	0.01

A_{FB} Systematic Errors in $B \rightarrow K^* \ell^+ \ell^-$

- Compare A_{FB} for exclusive and inclusive measurements
- Theory
 Incertainty
 In A_{FB} shape
 Is lower in incusive mode
 Theory
 <pTheory</p>
 <pTheory</p>

Bobeth, Hiller & van Dyk hep-ph/1006.5013

Huber, Hurth & Lunghi hep-ph/0712.3009

F_L in $B \rightarrow K^* \ell^+ \ell^-$

- F_L has been measured in 2 q² bins by BABAR and in 6 q² bins by Belle and CDF
- We will use results from PRD 79, 031102 (2009) scaled by 1.5
 (20% luminosity increase and 30% increase due to reprocessing, PID)

F_L in $B \rightarrow K^* \ell^+ \ell^-$

Scale statistical error by sqrt(75,000/425)

• Distribute errors measured in q_{low} into q_1 , q_2 , q_3 and in q_{high} into q_4 , q_5 , q_6 by weighting with decay rate

122	BABAR	BABAR	SuperB	SuperB
q low	-0.16	0.16	-0.01	0.01
q _{high}	-0.22	0.20	-0.014	0.012
q ₁	-0.34	0.31	-0.026	0.024
q ₂	-0.38	0.35	-0.028	0.026
q ₃	-0.25	0.23	-0.019	0.017
q ₄	-0.26	0.24	-0.02	0.018
q ₅	-0.34	0.31	-0.025	0.023
96	-0.36	0.33	-0.027	0.025
G.F	igen. Supe	erB Elba, 3	1-05-2011	17. 2

F_L Systematic Errors in $B \rightarrow K^* \ell^+ \ell$

- E Look at systematic uncertainties in qlow and qhigh
- Guess improvements of each contributions at SuperB
- Estimate is conservative
- Expect systematic uncertainties of
 <0.025 for q_{low} and
 <0.025 for q_{high}

	q low		q high	
	BABAR	SuperB	BABAR	SuperB
Total sys	0.041	0.025	0.044	0.025
m _{ES} fit	0.001	0.001	0.016	0.005
Bg shape	0.011	0.01	0.008	0.008
Signal mode	0.036	0.018	0.034	0.018
Fit bias	0.012	0.01	0.02	0.010
Mis-reco	0.01	0.01	0.01	0.01

$A_{I} \text{ in } B \rightarrow K^{(*)} \ell^{+} \ell^{-}$

Scale statistical error by sqrt(75,000/425)

SuperB

Fiba

Distribute errors measured in q_{low} into q_1 , q_2 , q_3 and in q_{high} into q_4 , q_5 , q_6 by weighting with decay rate

	1. 11	K*II					KII	141 1410 1415	
12.12	BABAR	BABAR	SuperB	SuperB		BABAR	BABAR	SuperB	SuperB
q _{low}		0.17		0.01			0.56		0.034
q _{high}	-0.28		-0.017			-0.30		-0.018	
q ₁		0.27		0.02			0.87		0.066
q ₂		0.29		0.022			0.97		0.07
q ₃		0.2		0.015			0.64		0.048
q ₄	-0.33		-0.025			-0.35		-0.027	
q ₅	-0.43		-0.033			-0.46		-0.035	
q ₆	-0.46		-0.035			-0.49	NI.	-0.037	0
	12 1 × 10	and the second	Still Street	and the state	1000		12753	2-2000	

Systematic Errors in $A_{I}(B \rightarrow K^{(*)}\ell^{+}\ell)$

- Systematic uncertainties in q_{low} are 0.05 and 0.03 for $B \rightarrow K \ell^+ \ell^-$ and $B \rightarrow K^* \ell^+ \ell^-$, respectively
- Systematic uncertainties in q_{high} are 0.03 and 0.04 for $B \rightarrow K \ell^+ \ell^-$ and $B \rightarrow K^* \ell^+ \ell^-$, respectively
- At SuperB we expect systematic uncertainties of 0.02-0.03 and 0.01-0.02 in q_{low} for $B \rightarrow K \ell^+ \ell^-$ and $B \rightarrow K^* \ell^+ \ell^-$, respectively
- In q_{high} , we expect systematic uncertainties of 0.01-0.02 and 0.02-0.03 in q_{low} for $B \rightarrow K \ell^+ \ell^-$ and $B \rightarrow K^* \ell^+ \ell^-$, respectively

Comments

- These estimates assume that the event reconstruction in individual modes has the same efficiency as that in BABAR
- Analysis uses a similar methodology and event optimization as that in BABAR
- \Rightarrow statistical errors scale with sqrt(L)
- Systematic errors are improved by dealing with larger signal yields which improve uncertainties from fitting and by trading an optimized selection for worse a statistical error as the systematic error is expected to be dominant
- By performing different extrapolations (scaling data, simulating the SuperB environment) will provide the best range of estimates

Conclusion

- At a luminosity of 75 ab⁻¹ at SuperB, the statistical error of A_{FB} in 6 q² bins is between 1.5% and 6%, the systematic error is 2.7-3.6%
- For F_L, the statistical error in 6 bins of q² is between 1% and 3%, the systematic error is 2.5%
- For A_I , the statistical error lies between 1.5% and 3% for $B \rightarrow K^* \ell^+ \ell^$ and 2.7% and 7% for $B \rightarrow K^* \ell^+ \ell^-$, systematic errors are 1-3%
- At SuperB exclusive and inclusive $B \rightarrow X_s \ell^+ \ell^-$ modes will be measured with high precision and several are systematics limited
- With this high statistics there is a great potential to explore other observables, e.g. amplitudes in full angular analysis and measure the 11 parameters with high precision

Thus, there is a great potential to see new physics at < O(0.1)

TABLE I: Number of events for $B \to K\ell^+\ell^-$, $B \to K^*\ell^+\ell^-$, $B \to X_s\ell^+\ell^-$ via the sum-of-exclusive modes (SE) and $B \to X_s\ell^+\ell^-$ via the recoil method (RM) for luminosities of 425 fb⁻¹ and 75 ab^{-1} . The signal yields are shown for the entire q^2 region, 0.1 GeV²/c⁴ < q^2 < 7.84 GeV²/c⁴ and 1 GeV²/c⁴ < q^2 < 6 GeV²/c⁴. Uncertainties in the yields are of the order of 20%.

	Numł	per of event	s in 425 fb^{-1}	Expect	ed number	c of events in 75 ab^{-1}
Mode	all q^2	0.1 - 7.84	1–6	all q^2	0.1–7.84	1–6
$K\ell^+\ell^-$	90	42	26	15,900	7,340	4,600
$K^*\ell^+\ell^-$	110	46	24	19,400	8,200	4300
$X_{\rm s}\ell^+\ell^-$ SL	270	171	101	47,500	30,000	17,900
$X_{\rm s}\ell^+\ell^-$ RM	49	31	18	8,600	5,500	3250

TABLE II: Present and extrapolated statistical and systematic uncertainties of the total branching fraction, partial branching fractions, CP asymmetries, isospin asymmetries, lepton flavor ratio for $B \to K \ell^+ \ell^-$ after combining e^+e^- and $\mu^+\mu^-$ modes as well as K^+ and K_S^0 modes.

		BABAR	$(425 \ fb^{-1})$	Super	$B (75 \ ab^{-1})$
Observable	$q^2~{ m region}~[{ m GeV^2/c^4}]$	Stat.	Sys.	Stat.	Sys.
$\sigma {\cal B} / {\cal B}$	all	0.175	0.05	0.011	0.025-0.035
$\sigma {\cal B} / {\cal B}$	0.1 - 7.02	0.20	0.044	0.012	0.022-0.035
$\sigma \mathcal{B}/\mathcal{B}$	10.24-12.96 and > 14.06	0.27	0.052	0.017	0.026-0.039
\mathcal{R}_K	all	0.34	0.05	0.021	0.025-0.038
\mathcal{A}_{CP}	\mathbf{all}	0.18	0.01	0.012	0.008-0.01
\mathcal{A}_I	0.1 - 7.02	0.56	0.05	0.034	0.025-0.035

TABLE III: Present and extrapolated statistical and systematic uncertainties of the total branching fraction, partial branching fractions, CP asymmetries, isospin asymmetries, lepton flavor ratio, longitudinal polarization and lepton forward-backward asymmetry for $B \to K^* \ell^+ \ell^-$ after combining $e^+ e^-$ and $\mu^+ \mu^-$ modes as well as K^{*+} and K^{*0} modes.

		BABAR	$a(425 \ fb^{-1})$	Super	$B (75 \ ab^{-1})$
Observable	$q^2~{ m region}~[{ m GeV^2/c^4}]$	Stat.	Sys.	Stat.	Sys.
$\sigma \mathcal{B}/\mathcal{B}$	all	0.162	0.063	0.01	0.032-0.048
$\sigma \mathcal{B}/\mathcal{B}$	0.1 - 7.02	0.23	0.070	0.014	0.035-0.053
$\sigma \mathcal{B}/\mathcal{B}$	$10.24 12.96 \ \mathrm{and} > 14.06$	0.24	0.071	0.015	0.036-0.054
\mathcal{R}_{K*}	\mathbf{all}	0.34	0.07	0.02	0.035-0.048
\mathcal{A}_{CP}	all	0.15	0.01	0.009	0.008-0.01
\mathcal{A}_I	0.1 - 7.02	0.17	0.03	0.01	0.015-0.023
\mathcal{F}_L	0.1–4	0.15	0.04	0.011	0.02-0.03
\mathcal{F}_L	4 - 7.84	0.14	0.04	0.011	0.02-0.03
\mathcal{A}_{FB}	0.1–4	0.14	0.05	0.011	0.025-0.038
\mathcal{A}_{FB}	4 - 7.84	0.14	0.05	0.011	0.025-0.038

TABLE IV: Present and extrapolated statistical and systematic uncertainties of the total branching fraction, partibranching fractions, CP asymmetries, isospin asymmetries, lepton flavor ratio, and angular observables for $B \to X_s \ell^+ \ell^-$ The first two columns show the results for the sum-of-exclusive modes (SE), the second two columns those for the recc method (RM), respectively. The sum-of-exclusive modes including 28 final states has an additional uncertainty of ~ 10^e from the decay model.

	$BABAR(425 \ fb^{-1})$					SuperB	(75 ab	-1)	
Observable	q^2 region	Stat.	Sys.	Stat.	Sys.	Stat.	Sys.	Stat.	Sys.
	$[{\rm GeV^2/c^4}]$	SE	SE	RM	RM	SE	SE	RM	RM
$\sigma B/B$	\mathbf{all}	0.11	0.056	0.26	0.06	0.008	0.03-0.05	0.019	0.03-0.05
$\sigma B/B$	0.1 - 1	0.29	0.07	0.69	0.07	0.022	0.04-0.06	0.052	0.04-0.06
$\sigma B/B$	1-4	0.23	0.06	0.53	0.06	0.017	0.03-0.05	0.040	0.03-0.05
$\sigma \mathcal{B}/\mathcal{B}$	4 - 7.84	0.18	0.06	0.43	0.06	0.014	0.03-0.05	0.032	0.03-0.05
$\sigma B/B$	10.24 - 12.96	0.31	0.07	0.73	0.07	0.024	0.04-0.06	0.055	0.04-0.06
$\sigma \mathcal{B}/\mathcal{B}$	>14.06	0.29	0.07	0.69	0.07	0.022	0.04-0.06	0.052	0.04-0.06
$\mathcal{R}_{X_{\delta}}$	all	0.21	0.06	0.50	0.06	0.016	0.03-0.05	0.038	0.03-0.05
\mathcal{R}_{X_s}	0.1 - 7.84	0.25	0.06	0.58	0.06	0.019	0.03-0.05	0.044	0.03-0.05
\mathcal{A}_{CP}	all	0.06	0.01	0.14	0.01	0.004	0.005-0.008	0.011	0.005-0.008
\mathcal{A}_{CP}	0.1 - 7,84	0.07	0.01	0.16	0.01	0.005	0.005-0.008	0.012	0.005-0.008
\mathcal{A}_I	all	0.05	0.06	0.12	0.06	0.004	0.03-0.05	0.009	0.03-0.05
\mathcal{A}_I	0.1 - 7.84	0.06	0.06	0.14	0.06	0.005	0.03-0.05	0.011	0.03-0.05
\mathcal{H}_L	0.1 - 1	0.17	0.04	0.40	0.04	0.013	0.02-0.03	0.030	0.02-0.03
\mathcal{H}_L	1 - 4	0.17	0.04	0.40	0.04	0.013	0.02-0.03	0.030	0.02-0.03
\mathcal{H}_L	4 - 7.84	0.13	0.04	0.27	0.04	0.009	0.02-0.03	0.021	0.02-0.03
\mathcal{H}_A	0.1 - 1	0.22	0.06	0.51	0.06	0.016	0.03-0.05	0.039	0.03-0.05
\mathcal{H}_A	1 - 4	0.22	0.06	0.51	0.06	0.016	0.03-0.05	0.039	0.03-0.05
\mathcal{H}_A	4 - 7.84	0.15	0.06	0.35	0.06	0.011	0.03-0.05	0.026	0.03-0.05

Summary of Expectations for 75 ab⁻¹

Expected uncertainties in K^t, K

mode	$\Delta B/B$ tot	$\Delta B/B$ low	\mathcal{R}_{Xs} tot	\mathcal{F}_{L}/H_{L} low	\mathcal{A}_{FB} low	$\mathcal{A}_{ extsf{CP}}$ tot	$\mathcal{A}_{\mathtt{I}}$ low
The Martin	[%]	[%]	[%]				
K σ _{stat}	1.1	4.4/bin	2.4		-	0.011	0.08/bin
σ _{sys}	3-4	3-4	3		-	0.008	0.03
K* o _{stat}	1.1	5.2/bin	2.0	.034/bin	.043/bin	0.01	0.03/bin
σ _{sys}	4-5	4-5	4	.02703	.03304	0.008	0.03
K^{*0} LHCb σ_{stat}	0.7			17	0.05/bin		
σ _{svs}	?	?					
X_s (SEM) σ_{stat}	0.7	3.3/bin	1.2	.021/bin	.027/bin	0.006	0.020/bin
σ _{sys}	5-6	5-6	5	0.0405	0.0506	0.01-0.02	0.0304
X_s (RM) σ_{stat}	2.2	7.8/bin	4.1	.051/bin	.065/bin	0.02	0.049/bin
σ _{svs}	5-6	5-6	5	0.0405	0.0506	0.01-0.02	0.0304

For SuperB assume 75 ab⁻¹, for LHCb 5 years at 2fb⁻¹, low (q²<6 GeV²)
 12 bins (exclusive & sum of exclusive modes), 6 bins for recoil method
 G. Eigen, SuperB Elba, 31-05-2011