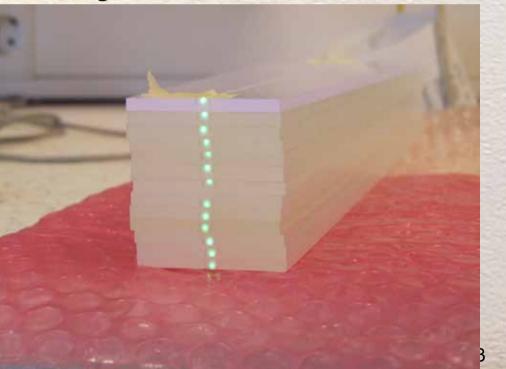

Introduction

- The backward endcap EMC prototype consists of 24-layers of Pb plates and scintillator strips
 → full depth is 12 X₀
- Pb plates are 2.8 mm thick ring segments
- Scintillator strips are 3 mm thick left-handed spirals, right-handed spirals radial segments that alternate eight times
- It is sufficient read out 6 strips per layer since strip sizes are larger (4.1-9.8 cm) than one Molière radius (3.8 cm)
 total of 144 readout channels
- Each scintillator strip is read out with a WLS Y11 fiber positioned in a groove in the center of the strip and coupled to an MPPC at the outer rim



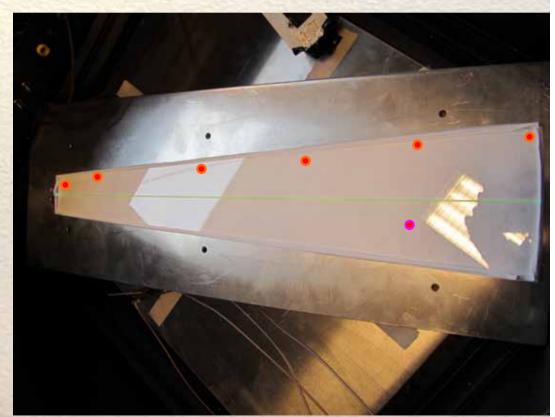
Status of Prototype Preparations

14 out of 48 sector strips have been produced in our workshop with the old milling machine

- Machinist said that rest will be before summer vacation
- Spiral strip will be cut with new milling machine

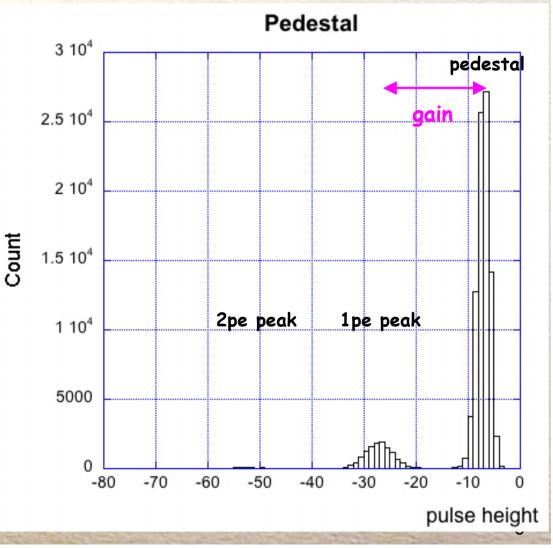
Status of Prototype Preparations

- The Pb plates have been at Bergen for several months
- I am negotiating with DESY to help out with cutting the logarithmic spiral strips
- Since the strips need to be held at a fixed position in each layer, I need to buy plastic filler material that need to be cut to the right shape
 A8 additional pieces

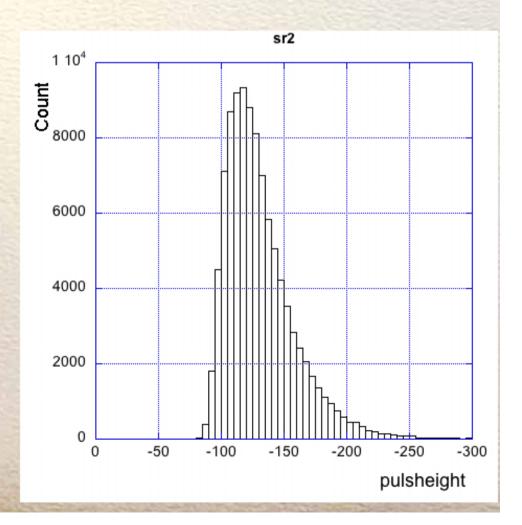


Missing components:

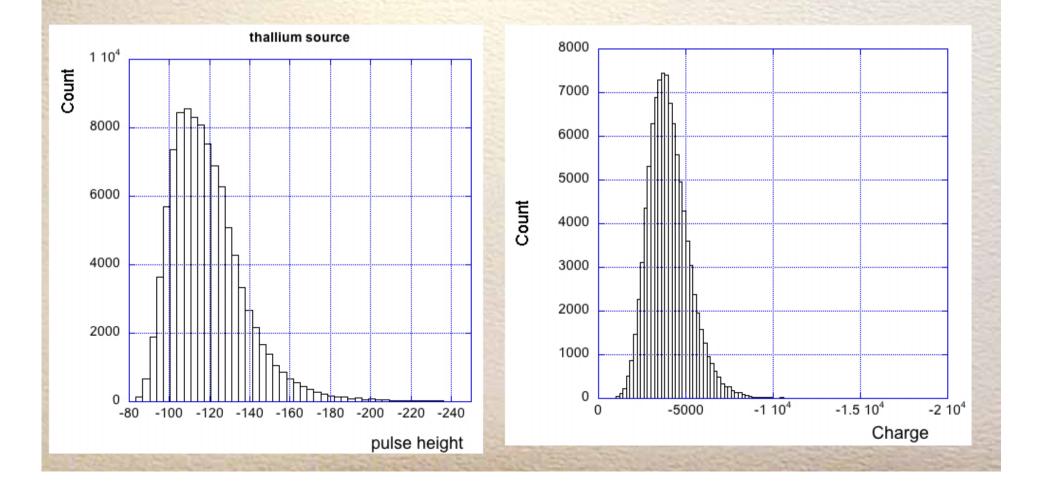
- 3 mm thick plastic filler material
- 30m Y11 fiber
- Diffuse reflector sheets and paint
- Temperature sensors
- Get 3 more SPIROC boards from LAL
- Get calibration board and clear fibers from Prague


Light Yield and Uniformity Measurements

- Use first sector strip with Y11 fiber positioned in the center read out with MPPC at outer end (RHS)
- Top and bottom faces are covered with TYVEC
- Side faces are covered with Teflon tape
- Measure light yield with ⁹⁰Sr source
- Measure non-uniformity with light pulser at 6 positions half a cm off outer and inner end plus four points separated from position outer position by 10 cm steps
- Measure both peak and area (charge)


Light Yield Measurements

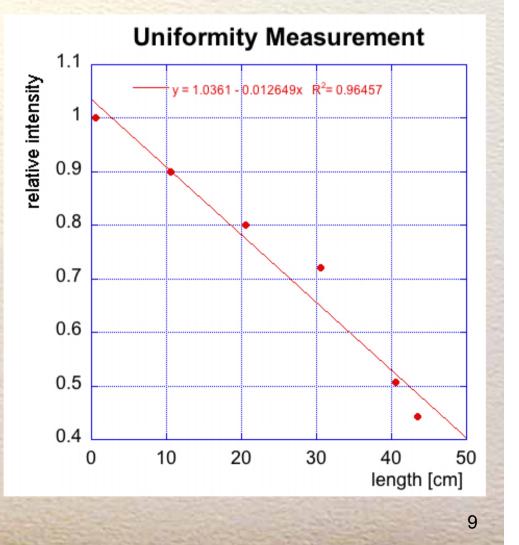
- Use random triggers to measure position of pedestal and that of single p.e. peak
- Set threshold at zero bins
- Pedestal is at bin 6.5
- Single pe peak is at bin 26.5
- Gain is 20 bins


Light Yield Measurements

- Measure absolute light yield with ⁹⁰Sr source placed in lower third of the strip directly on top of the strip (point source in AL housing)
- Endpoint energy is 2.283 MeV
- Set threshold at -75 bins to enhance source triggers
- For time reasons, I did not install a trigger counter below the strip
- Thus, electrons have variable path lengths (not just 3 mm) some stop inside scintillator others may be under an angle
- MIP peak is in bin 117.5 which corresponds to 5.9 p.e.
- For ²⁰⁴Tl measure 5.6 p.e. at position further up

Light Yield Measurements

Charge distribution looks good, but gain calibration is complicated, since distributions for pedestal and single p.e. overlap



Uniformity Measurements

The light yield clearly drops from the broad end to the narrow end

- The ratio of the 2 sides is 0.41
- See a slightly higher yield

Response from light pulser

Light Yield Adjustments

In the prototype, the side faces will be painted white

- We will perform reflectivity studies for the top and bottom faces
 due to past experience TYVEC seems to be a good choice for reasonable price
- We need to compensate for the non-uniformity effects
 develop pattern with e.g. black and white dots
- Light yield can be increased by removing air gap between fiber and MPPC (glue MPPC)
- To keep a high dynamic range MIP should be clearly visible but as low as possible
 - → MIP peak corresponds to 0.523 MeV at normal incidence
 - → so dynamic range is 270 MIPs or 142 MeV
 - → I can increase MIP to around 10 pe at broad end yielding dynamic range of 180 MIPS
 - → after making light yield uniform expect MIP around 5 pe and a dynamic range of 90 MIPS (in 24 layers 1.1 GeV observed energy)

Manpower Issues

The AIDA project has officially started,

- → I will get a postdoc who will work 50% on the backward EC EMC prototype with target starting date August/September
- We have to apply for funding of subatomic physics from NFR for 2012-2017 period in September (3 projects)
- One of my ATLAS master students has built a preamplifier, he is interested in helping me with strip testing and prototype construction
- A Chinese master student has been accepted by UiB, he will join me in August to work on the prototype
- Valerie Saveliev from Moscow said he was interested in SuperB, in particular calorimetry, (he is involved in the analog hadron calorimeter in ILD)
- A reorganization at the department will pour more technical students into the HEP group → may get another student in the fall

Cost Estimate

 Scintillator material: 10⁵ cm³ (89 Kg), St Gobain BC 408 sheets: 75 cm x75 cm \$876 ea 	→ 140k\$
Labor: 1152 h for cutting sides and grooves	→ 60k\$
 Pb sheet: 10⁵ cm³, (1120 Kg), 20\$/Kg A8 half-ring shapes (cut to rght size) 	→ 16k\$
MPPCs: 1152 detectors, 30 € (w/o tax)	→ 50k\$
Fiber: 1 mm Y11 fiber, 800 m	→ 4k\$
Support structure, Al	→ 30k\$
Thermocouples, cables, reflector, paint	→ 5k\$
Power supplies	→ 20k\$
 Frontend electronics: LAL SPIROC chip? 1 LED/strip plus driver 100\$/channel 115k\$ 	
• DAQ	→ 10k\$
Total X I am working on locating funding for the Backward EC EI	→~450k\$ MC 12

Conclusions

- We have 14 radial sector strips, remaining 34 will be cut before middle of July
- Strip production is still the bottleneck and hopefully DESY will help out with production of logarithmic spiral strips
- The manpower situation will improve after the summer
- I made first light yield and uniformity measurements of radial sector strip
- I am trying to recruit new collaborators (DESY, Moscow)
- I am working on securing 450k\$ funding for the backward EC EMC

Next Steps

- Need to read out strip with SPIROC chip
- Seed to measure light yield with trigger counter underneath the strip
- Need to measure different positions with source
- Test all cut strips and mount MPPC
- It may be useful to use custom-made preamp that sits at MPPC and move SPIROC out behind calorimeter
- Need to investigate backgrounds to decide if strips need to be split into 2 pieces to deal with occupancy due to backgrounds
- Measure properties of 2 strip segments connected via one Y11 fiber
- Measure non-linearity of MPPC in strip arrangement
- Perform reflectivity studies