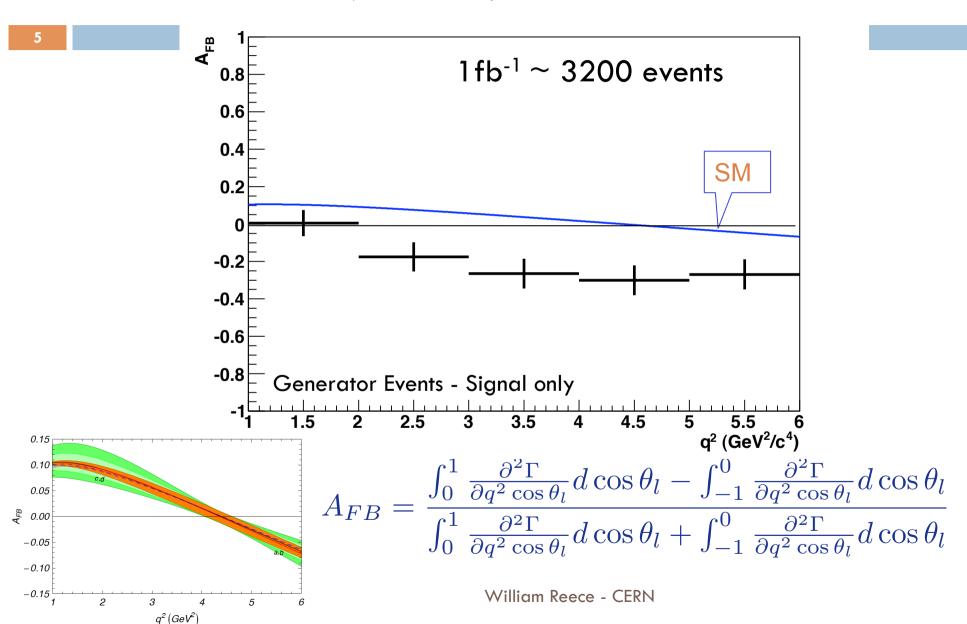
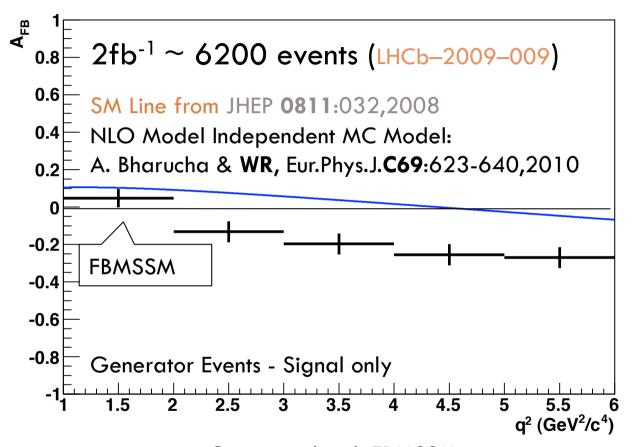
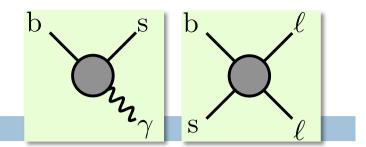

EXCLUSIVE $B \to K^\star \ell \ell$ WITH HIGH STATISTICS


Will Reece (CERN)


Introduction

- Rare decays a hot topic at the LHC
 - Core part of LHCb physics program (arXiv:0912.4179)
 - $lue{}$ Sensitive to new physics in b o s loops
- Two targets of particular interest
 - $lue{}$ $B_s o \mu \mu$ and $B_d o K^\star \ell \ell$
 - Orthogonal and complementary views on NP
 - \square Gives access to C_7 , C_9 , C_{10} , C_S , C_P & Primes
- $lue{}$ Will focus on $B_d o K^* \mu \mu$ at LHCb
 - Not a member of collaboration so will concentrate on phenomenology results and interesting measurements

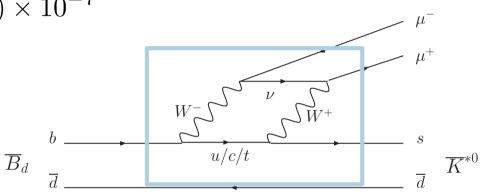


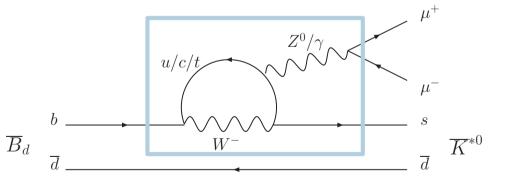
Generated with FBMSSM

[Altmannshofer, Ball, Bharucha, Buras, Straub, Wick, (JHEP 0901:019,2009)]

(LHCb would have already observed $B_s o \mu \mu$ in this scenario)

$B_d \to K^* \mu^+ \mu^-$

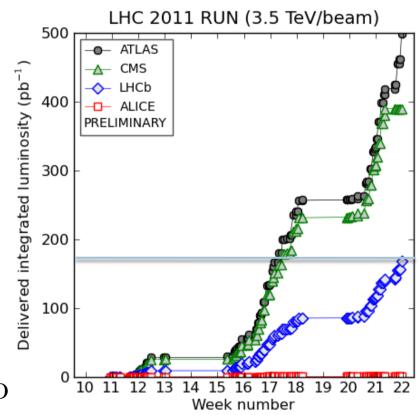

O_{9,10}


7

- □ First observed at Belle
 - $Br(B_d \to K^* \mu^+ \mu^-) = (11.5 ^{+0.16}_{-0.15}) \times 10^{-7}$
- Particles in Loop
 - Both neutral and charged NP (replace W^{\pm} , Z^{0}/γ , u/c/t)
- Sensitive to NP in loops
 - Use OPE: Model independent

$$\mathcal{H}_{\text{eff}} \propto \sum_{i=1}^{10} \left[C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right]$$

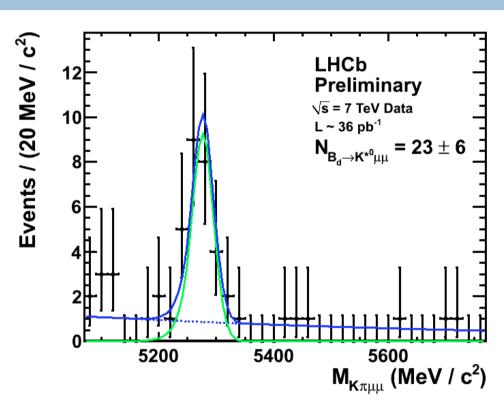
- \square Dominated by C_7 , C_9 , C_{10} in SM
 - Enhance other operators with NP
- Measure Wilson coefficients
 - $lue{}$ Discover or limit NP in b
 ightarrow s loop



Note on Yields

- Public LHCb MC studies:
 - Full simulation at 14 TeV
 - \blacksquare Use $\sigma_{b\bar{b}}$ = 500 μb
 - 2fb⁻¹ per nominal year
- □ 2011 LHC Run:
 - 7TeV with pile-up
 - Measure (arXiv:1009.2731):

$$\sigma(pp \to b\bar{b}X) = (284 \pm 20 \pm 49)\mu b$$


- Stick to official MC yields here:
 - Mentally scale by ~0.6!

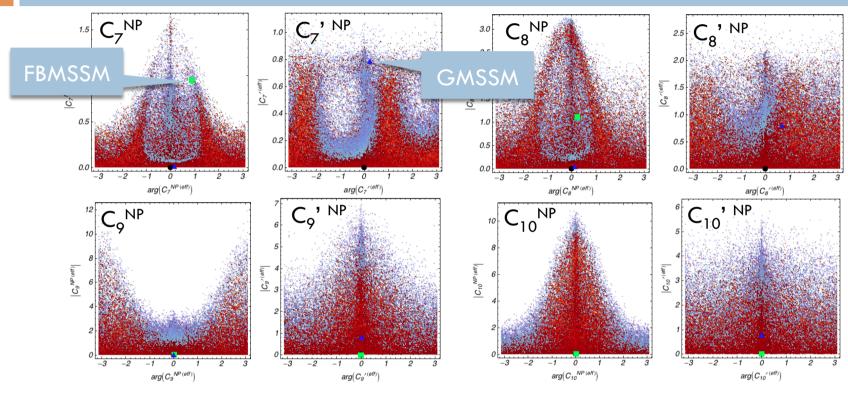
(generated 2011-05-30 08:10 including fill 1815)

LHCb Analysis Status

- \blacksquare Selection tuned on $B \to K^{\star}J/\psi$ events
- Clean signal sample
 - Results only for 36pb⁻¹
- \Box 23±6 evts; B/S = 0.2
 - BaBar: 60 0.3
 - □ Belle: 230 0.25
 - □ CDF: 100 0.4
- LHCb at planned lumi now
 - \sim 200pb⁻¹ on tape

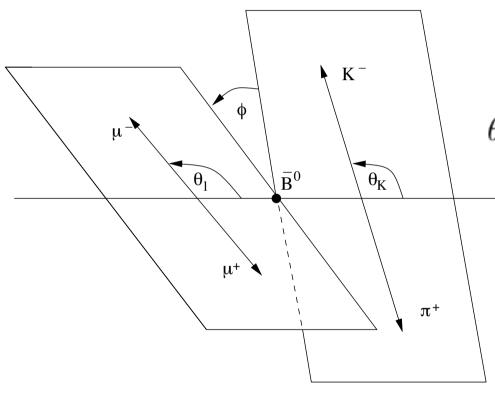
LHCb 2010 LHC Run data:

B/S = 0.2; Selected with MVA


B/S = 1 gives 50% more events

Red: 68%; Blue 95%Values shown at M_W SM at (0,0)

Wilson Coefficients

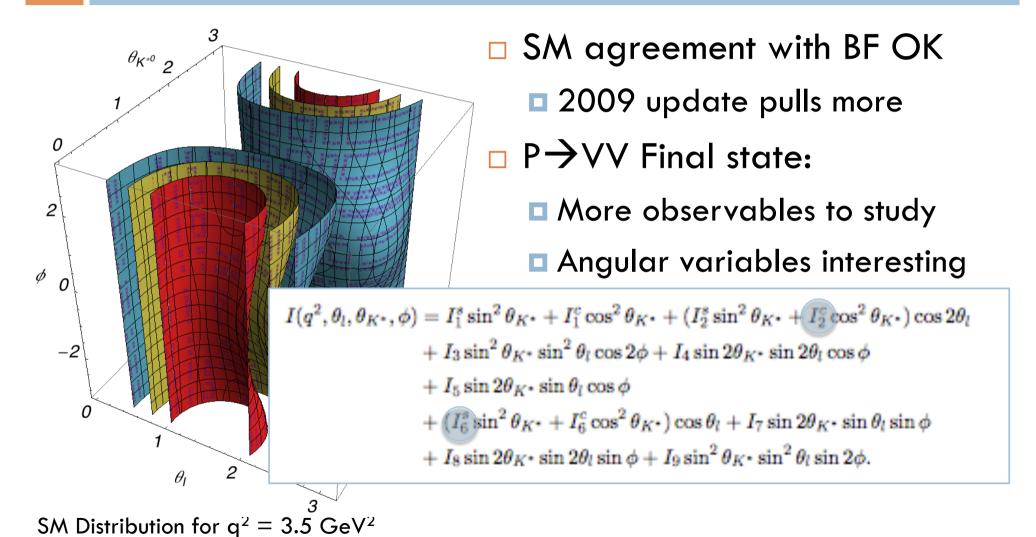

A. Bharucha & WR, Eur. Phys. J. C69:623-640,2010

Page 10

- \square MCMC scan over C_7 , C_8 , C_9 , C_{10} , C_S , C_P + primes
- Phases left free, uses 2010 constraints (see backup)
 - High- q^2 constraints in A_{FB} , F_L not considered (affects C_{10})

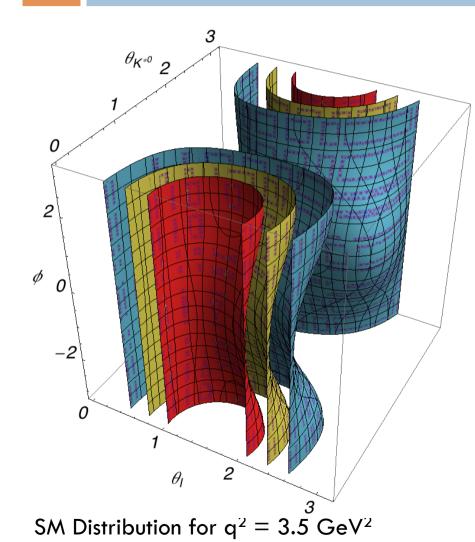
Decay Kinematics

 θ_l : Angle between μ^- and \bar{B} in $\mu\mu$ rest frame


 θ_K : Angle between K^- and the \bar{B} in the \bar{K}^{*0} rest frame

 ϕ : Angle between the \bar{K}^{*0} and $\mu\mu$ decay planes

- Decay described in terms of 3 Angles and 1 Invariant Mass
 - \blacksquare θ_{I} , θ_{K} , ϕ and q^2 , the invariant mass squared of μ pair


Angular Distribution $\frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_1\mathrm{d}\cos\theta_{\mathrm{K}^*}\,\mathrm{d}\phi} = \frac{9}{32\pi}I(q^2,\theta_l,\theta_{K^*},\phi)$

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{dq}^2\,\mathrm{d}\cos\theta_l\,\mathrm{d}\cos\theta_{\mathrm{K}^*}\,\mathrm{d}\phi} = \frac{9}{32\pi}I(q^2,\theta_l,\theta_{K^*},\phi)$$

Angular Distribution (Experimental)

Page 13

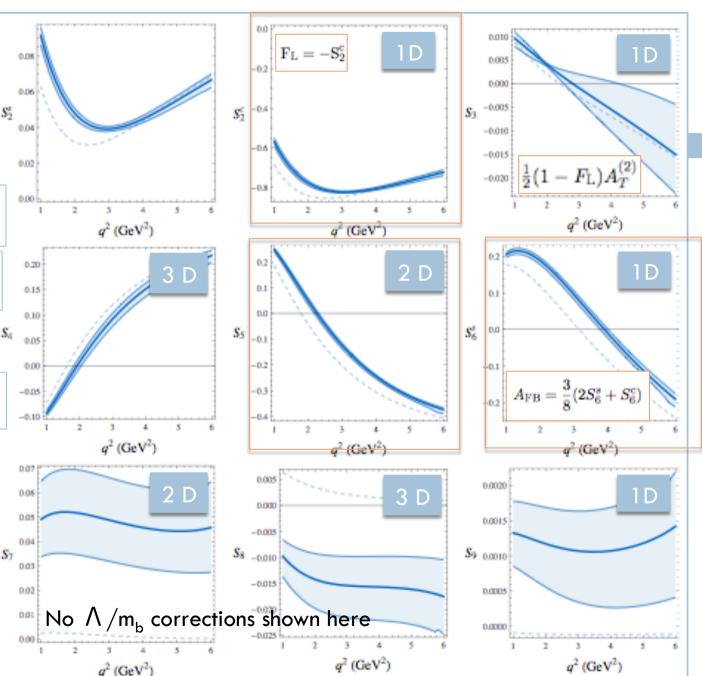
- \square Resolution: q^2 , θ_{l} , θ_{K} , ϕ good
- Decay distribution symmetries:
 - Important for fitting

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\mathbf{q}^2\,\mathrm{d}\cos\theta_{\mathrm{l}}\,\mathrm{d}\cos\theta_{\mathrm{K}^*}\,\mathrm{d}\phi} = \frac{9}{32\pi}I(q^2,\theta_{l},\theta_{K^*},\phi)$$

- Number events in sample
 - Proportional to decay amplitude
 - □ Larger coefficients \rightarrow more events \rightarrow smaller uncertainties on given I_n
- Balance with theory errors
 - Many nice observables proposed

14

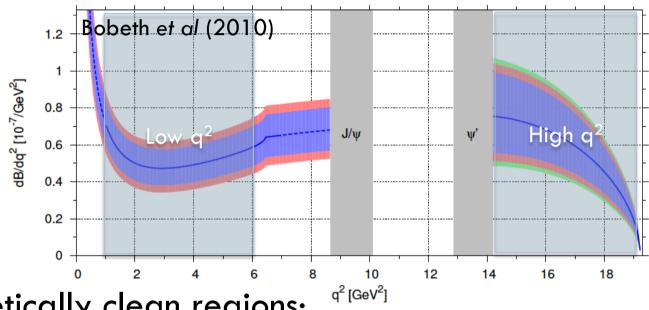
$$S_i^{(a)} = \left(I_i^{(a)} + \bar{I}_i^{(a)}\right) \bigg/ rac{d(\Gamma + \bar{\Gamma})}{dq^2}$$


$$rac{d\Gamma}{dq^2} = rac{3}{4}(2\,I_1^s + I_1^c) - rac{1}{4}(2\,I_2^s + I_2^c)$$

$$\frac{3}{4}(2 S_1^s + S_1^c) - \frac{1}{4}(2 S_2^s + S_2^c) = 1.$$

$$A_T^{(2)} = \frac{S_3}{2 S_2^s},$$

$$A_T^{(3)} = \left(\frac{4 S_4^2 + S_7^2}{-2 S_2^c (2 S_2^s + S_3)}\right)^{1/2}$$


$$A_T^{(4)} = \left(\frac{S_5^2 + 4 S_8^2}{4 S_4^2 + S_7^2}\right)^{1/2}.$$

SM Predictions, Altmannshofer et al, JHEP 0901:019,2009

$$A_{\rm T}^{(5)}\Big|_{m_\ell=0} = \frac{\sqrt{16J_1^{s\,2} - 9J_6^{s\,2} - 36(J_3^2 + J_9^2)}}{8J_1^s}$$

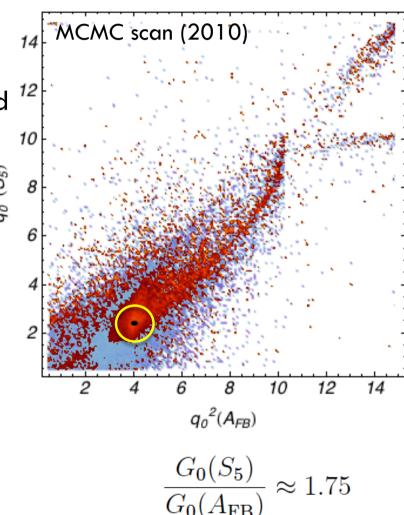
Landscape $-q^2$

- Theoretically clean regions:
 - Large recoil $(1 \le q^2 \le 6 \text{ GeV}^2)$ e.g. Kruger, Matias, Phys.Rev.**D71**:094009,2005
 - □ Low recoil $(14 < q^2 < 19.2 \text{ GeV}^2)$ Bobeth et al, JHEP 1007:098,2010
- Belle measures signal yields in both regions
 - \blacksquare Ratio low/high: 0.35 ± 0.1

What to measure?

- Consider three phases: low, medium, high statistics
- □ Low statistics (~100s): 1D projections
 - \Box A_{FB}, F_L, BF, (A_T⁽²⁾, S₉)
- □ Medium statistics (~1000s): Can use 2D projections
 - \square A_{FB} (+ Zero), S₅ (+ Zero), A_T⁽²⁾, CP asymmetries
- □ High statistics (>5000): Full-angular analysis
 - Can measure everything!
 - Many theoretically clean variables for low and high q²
 - May be able to possible to reduce required yields?

Low Statistics
$$H_T^{(3)} = \frac{\operatorname{Re}(A_{\parallel}^L A_{\perp}^{L*} - A_{\parallel}^{R*} A_{\perp}^R)}{\sqrt{\left(|A_{\parallel}^L|^2 + |A_{\parallel}^R|^2\right)\left(|A_{\perp}^L|^2 + |A_{\perp}^R|^2\right)}} = \frac{\beta_l J_6}{2\sqrt{(2J_2^s)^2 - J_3^2}}$$

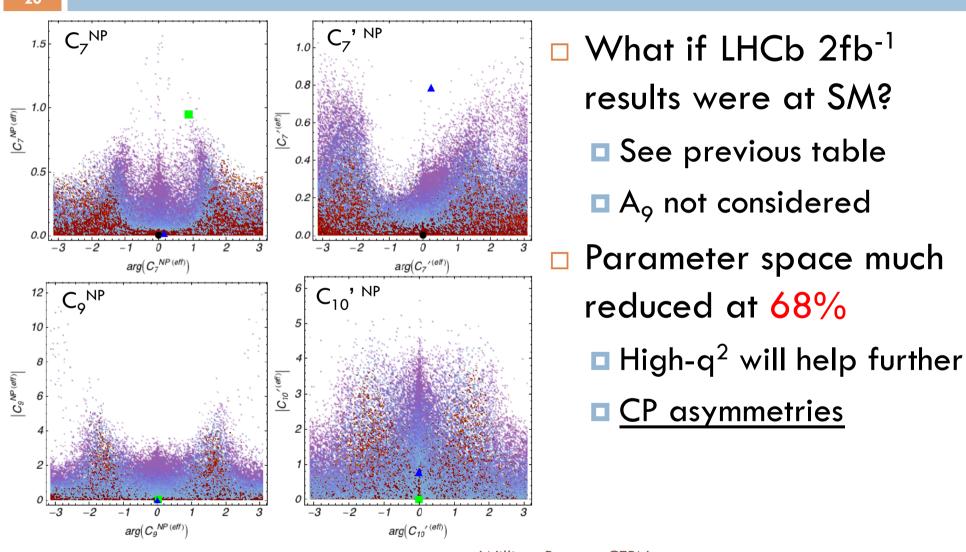

Limited to 1D distributions – project over angles

$$\begin{split} \frac{d\Gamma'}{d\phi} &= \frac{\Gamma'}{2\pi} \left(1 + \frac{1}{2} (1 - F_L) A_T^{(2)} \cos 2\phi + A_{Im} \sin 2\phi \right) \\ \frac{d\Gamma'}{d\cos \theta_l} &= \Gamma' \left(\frac{3}{4} F_L \sin^2 \theta_l + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_l) + A_{FB} \cos \theta_l \right) \\ \frac{d\Gamma'}{d\cos \theta_K} &= \frac{3\Gamma'}{4} \left(2 F_L \cos^2 \theta_K + (1 - F_L) \sin^2 \theta_K \right) \end{split}$$

- \square Try simultaneous fit -3x1D (LHCb-PUB-2007-057)
- \square Sensitivity to $A_T^{(2)}$ poor in low q^2 region (F₁ large)
 - □ In high q² region, F₁ smaller so expect much better results
 - C.F. Very low q^2 B \rightarrow K*ee analysis (LHCb-PUB-2009-008)
- □ Excellent prospects for H_T⁽³⁾ at this stage

2D distributions + zeros

- \square S_5 , S_7 become available
- \square CP asym (A_o), $A_T^{(2)}$ more constrained
- Zeros experimental uncertainty:
 - Proportional to gradient
- \square A_{FR} and S₅ zeros clean
 - Form factors cancel at LO
- □ Gradient for S₅ often large
 - □ Get ~2 times sensitivity
- □ Ratio $A_{ER}^{\{1,2\}}/A_{ER}^{\{4,6\}}$ may help
 - See Lunghi, Soni, JHEP 1011:121,2010
- □ H_T⁽²⁾ could prove powerful here



Comparing Observables

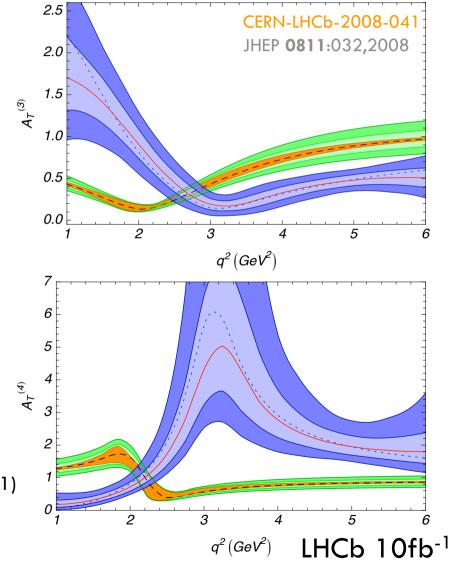
Observable	$2{\rm fb}^{-1}$	$1{\rm fb}^{-1}$	$0.5\mathrm{fb}^{-1}$	$\mathrm{LHC}b~2\mathrm{fb}^{-1}$	Ref.
$q_0^2(A_{ m FB})$	$^{+0.56}_{-0.94}$	$^{+1.27}_{-0.97}$	_	0.42	[128]
$q_0^2(S_5)$	$^{+0.27}_{-0.25}$	$+0.53 \\ -0.40$	_	_	
$\langle A_{\rm FB} \rangle_{1-6{ m GeV}^2}$	$+0.03 \\ -0.04$	$+0.05 \\ -0.03$	$^{+0.08}_{-0.06}$	0.020	[107]
$\langle F_{ m L} angle_{1-6{ m GeV}^2}$	$^{+0.02}_{-0.02}$	$^{+0.04}_{-0.03}$	$^{+0.04}_{-0.06}$	0.016	[107]
$\langle S_5 \rangle_{1-6\mathrm{GeV}^2}$	$^{+0.07}_{-0.08}$	+0.09 -0.11	$^{+0.16}_{-0.15}$	_	
$\langle A_9 \rangle_{1-6\mathrm{GeV}^2}$	$^{+0.08}_{-0.07}$	$^{+0.11}_{-0.11}$	$^{+0.22}_{-0.14}$	0.015	$[2]^a$
<u> </u>	·				

- Use simple counting experiments (non-optimal)
 - Compare sensitivities (official LHCb numbers shown in box)
 - See CERN-THESIS-2010-095 for more details

High q^2 Estimates: $(q^2 > 14GeV)$

My (unofficial) high-q ² estimates: A_{FB} : E_{L}	low a2	1			
F_L : ± 0.01 ± 0.016 $A_T^{(2)}$: ± 0.2 ± 0.42	iow-q-				
Based on CERN-LHCB-2007-057					

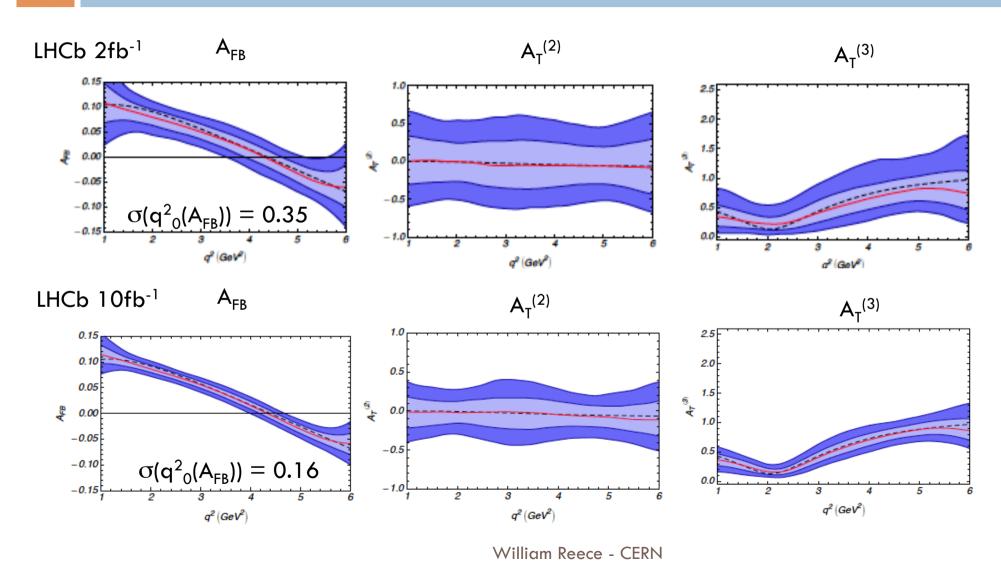
- \square Increased statistics in high-q² bin: Scale by sqrt(1/0.35)
 - Selection efficiencies, trigger, acceptance easier?
- □ F_L suppression of A_T⁽²⁾ reduced: Take 25% effect here

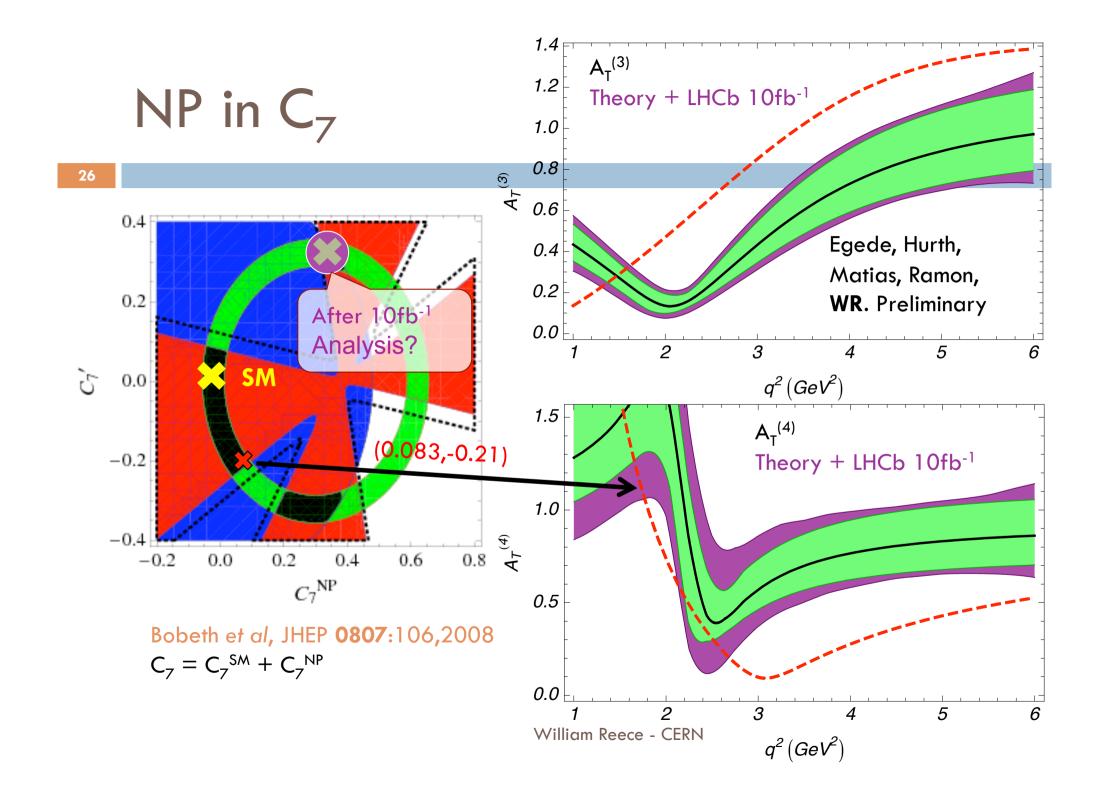

High Statistics

- Perform full-angular analysis
 - Fit for spin amplitudes
 - $A_{\perp L,R}, A_{||L,R}, A_{0L,R}$
 - Assume polynomial q² variation
- Calculate <u>any</u> observable from amplitudes
 - New observables $A_T^{(3)} A_T^{(4)}$ optimized for C_7 ' sensitivity
 - 10fb⁻¹ sensitivities for SUSY input
 - JHEP 0704 (2007) 058 model 'b'
 - Allowed by experimental constraints
- MC Fits converge with 2fb⁻¹
- □ Separate fit in high- q^2 region \rightarrow $H_T^{(1)}$
- All CP asymmetries now available

High Statistics

- Perform full-angular analysis
 - Fit for spin amplitudes
 - $A_{\perp L,R}, A_{||L,R}, A_{0L,R}$
 - Assume polynomial q² variation
- Calculate <u>any</u> observable from amplitudes
 - New observables $A_T^{(3)} A_T^{(4)}$ optimized for C_7 ' sensitivity
 - 10fb⁻¹ sensitivities for SUSY input
 - JHEP 0704 (2007) 058 model 'b'
 - Allowed by experimental constraints
- MC Fits converge with 2fb⁻¹
- □ Separate fit in high- q^2 region \rightarrow $H_T^{(1)}$
- All CP asymmetries now available




Note on Symmetries

Case	Coefficients	Dependencies	Amplitudes	Symmetries
$m_{\ell} = 0, A_S = 0$	11	3	6	4
$m_\ell=0$	11	2	7	5
$m_{\ell} > 0, A_S = 0$	11	1	7	4
$m_{\ell} > 0$	12	0	8	4

- Angular distribution has symmetries
 - Must be removed before fitting (under-constrained)
- All observables must be invariant
 - Many in literature are not! E.g. A_T⁽¹⁾
- Massless leptons case: 3 trivial + 1 non-trivial
 - Independent L and R phase rotations
 - Two L-R rotations: One real, one complex
 - See Egede et al, JHEP 1010:056,2010

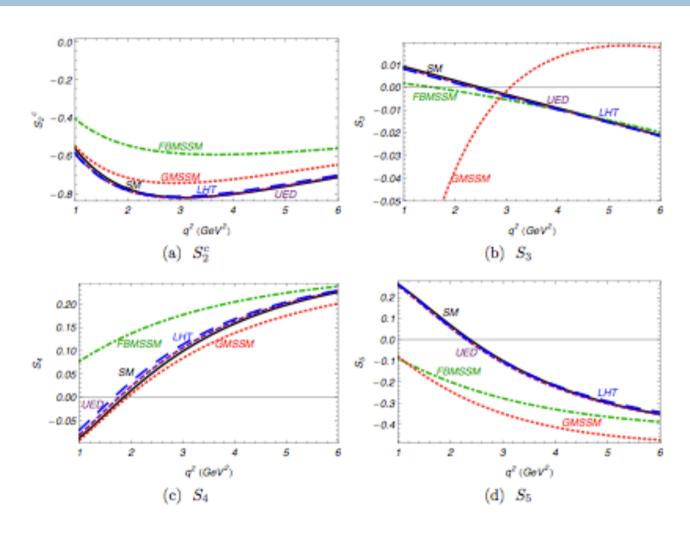
Full Angular Fit Sensitivities (SM)

Summary

- $lue{}$ Three eras of $B o K^\star\mu\mu$ measurements at LHCb
 - Each has interesting observables to study
 - Must balance experimental and theoretical uncertainties
- Should really cut into allowed regions
 - Severe limits or explore structure of NP
- □ High-q² region little studied so far by experimentalists
 - Looks pretty promising
- □ Full-angular analysis will be key
 - Most interesting area for comparison with SuperB

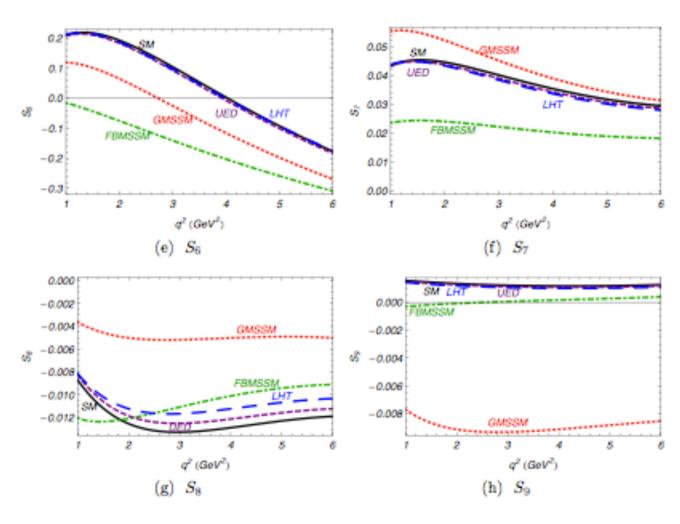
BACKUP

Comparisons with Theory (2010)


Belle Update (2009)
0.99\pm 0.2\pm 0.9
Hiroyuki Nakayama, (Tokyo U.) . Dec 2009. 142pp.
Ph.D. Thesis

Observable	Experiment	SM Theory
$\mathcal{B}(B_s \rightarrow \mu^+ \mu^-)$	$3.6 \cdot 10^{-8}$ [57]	$(3.70 \pm 0.31) \cdot 10^{-9}$
$\mathcal{B}(B \to X_s l^+ l^-)_{1\text{-}6 \mathrm{GeV}^2}$	$(1.60 \pm 0.51) \cdot 10^{-6}$ [14]	$(1.97 \pm 0.11) \cdot 10^{-6}$
$\mathcal{B}(B \to X_s \gamma)$	$(3.52 \pm 0.23 \pm 0.09) \cdot 10^{-4}$ [56]	$(3.28 \pm 0.25) \cdot 10^{-4}$
$S(B \rightarrow K^*\gamma)$	$(-1.6 \pm 2.2) \cdot 10^{-1}$ 56	$(-0.26 \pm 0.05) \cdot 10^{-1}$
$\langle A_{\rm FB} \rangle_{1\text{-}6{ m GeV}^2}$	-0.26 ± 0.29 [8]	0.04 ± 0.03
$\langle F_L \rangle_{1\text{-}6\mathrm{GeV}^2}$	0.67 ± 0.24 [8]	0.76 ± 0.08

Table 8: Experimental measurements used as constraints, along with theoretical predictions in the SM.


A. Bharucha & WR, Eur. Phys. J. C69:623-640,2010

Landscape with NP

William Reece - CERN

Landscape with NP

William Reece - CERN

Massless symmetries

Left-handed phase rotation
Right-handed phase rotation

Continuous L-R global rotation

Continuous L-R global rotation

$$\begin{split} A_{\perp L}^{'} &= e^{i\phi_{L}}A_{\perp L}, \ A_{\parallel L}^{'} = e^{i\phi_{L}}A_{\parallel L}, \ A_{0L}^{'} = e^{i\phi_{L}}A_{0L} \\ A_{\perp R}^{'} &= e^{i\phi_{R}}A_{\perp R}, \ A_{\parallel R}^{'} = e^{i\phi_{R}}A_{\parallel R}, \ A_{0R}^{'} = e^{i\phi_{R}}A_{0R} \\ A_{\perp L}^{'} &= +\cos\theta A_{\perp L} + \sin\theta A_{\perp R}^{*} \\ A_{\perp R}^{'} &= -\sin\theta A_{\perp L}^{*} + \cos\theta A_{\perp R} \\ A_{0L}^{'} &= +\cos\theta A_{0L} - \sin\theta A_{0R}^{*} \\ A_{0R}^{'} &= +\sin\theta A_{0L}^{*} + \cos\theta A_{0R} \\ A_{\parallel L}^{'} &= +\cos\theta A_{\parallel L} - \sin\theta A_{\parallel R}^{*} \\ A_{\parallel R}^{'} &= +\sin\theta A_{\parallel L}^{*} + \cos\theta A_{\parallel R}. \\ A_{\perp L}^{''} &= +\cos\theta A_{\parallel L} + \sinh\phi A_{\perp R}^{*} \\ A_{\perp L}^{''} &= +\cosh\phi A_{\perp L} + \sinh\phi A_{\perp R}^{*} \\ A_{\perp R}^{''} &= +\sinh\phi A_{\perp L}^{*} + \cosh\phi A_{0R} \\ A_{0L}^{''} &= -\sinh\phi A_{0L}^{*} - \sinh\phi A_{0R}^{*} \\ A_{0R}^{''} &= -\sinh\phi A_{\parallel L}^{*} - \cosh\phi A_{0R} \\ A_{\parallel L}^{''} &= -\sinh\phi A_{\parallel L}^{*} - \sinh\phi A_{\parallel R}^{*} \\ A_{\parallel L}^{''} &= -\sinh\phi A_{\parallel L}^{*} - \sinh\phi A_{\parallel R}^{*} \\ A_{\parallel L}^{''} &= -\sinh\phi A_{\parallel L}^{*} - \sinh\phi A_{\parallel R}^{*} \\ A_{\parallel R}^{''} &= -\sinh\phi A_{\parallel L}^{*} - \sinh\phi A_{\parallel R}^{*} \\ A_{\parallel R}^{''} &= -\sinh\phi A_{\parallel L}^{*} + \cosh\phi A_{\parallel R}. \end{split}$$