Fwd PID effects on EMC

SuperB EMC Session

XVII SuperB Workshop and Kick Off Meeting
La Biodola (Isola d'Elba)

31/05/2011

S. Germani INFN Perugia

Outline

- Study of the impact of the forward PID detector options on the EMC performance
 - Detector options
 - Method description
 - $-\gamma$ energy resolution and efficiency
 - π^0 mass resoltion and efficiency
 - Conclusions

Fwd PID geometry options

Method description

• Simulation:

- Monochromatic single particle beams @ different energies
- Machine background (Rad Bhabha

Digitization

 Use realistic electronic signal shape and temporal development to overlay the effecto of background and signal particles in the detector

Reconstruction

- Perform clustering algorithm
- Each cluster is considered as a potential γ

Photon measured energy

Photon selection: cluter with smaller angle wrt MC truth

Photn energy resolution

No Significant effect

Photon detection efficiency

- →Small photon efficiency decrease at low energy
- → fTOF has sligthly larger effect due to the distance from EMC

Reconstructed π^0 mass No PID – 2 Fwd γ

- ightarrow mass for 2 $\,\gamma\,$ in the Fwd calorimeter
- →Signal fit: Novosibirsk function
- →Background:

F(E) = (E+k1)/(1+exp(E*k2)

Reconstructed π^0 mass No PID – 1 Fwd γ

Reconstructed π^0 mass fTOF – 2 Fwd γ

- \rightarrow π^0 mass for 2 γ in the Fwd calorimeter
- →Signal fit: Novosibirsk function
- →Background:

F(E) = (E+k1)/(1+exp(E*k2)

Reconstructed π^0 mass fTOF – 1 Fwd γ

Reconstructed π^0 mass FARICH – 2 Fwd γ

- \rightarrow π^0 mass for 2 γ in the Fwd calorimeter
- →Signal fit: Novosibirsk function
- →Background:

F(E) = (E+k1)/(1+exp(E*k2)

Reconstructed π^0 mass FARICH – 1 Fwd γ

π⁰ Mass resolution

Mass resolution from fit: Novosibirsk width

Background shape for 1 γ in the Fwd is vey hard to fit (large fluctuations)

No significant effect on π^0 mass resolution

π⁰ detection efficiency

Fit results are quite unstable:

- → Developed 2 alternative metods to measure relative efficiency
- →Reported values are the mean of the 2 methods
- →Error is the difference between the 2 method
 - Method 1) $N\pi = Novosibirsk integral$
 - Method 2) $N\pi$ = Histogram integral Bkg function integral

Large errors and fluctuations
No significant effect

Conclusions

- The different geometry options do not show any significant difference in
 - π0 mass resoltion
 - π0 detection efficiency (large errot due to fit instability)
 - $-\gamma$ energy resolution
- The only sizable effect is a small efficiency loss for low energy photons
 - Distance from EMC seems to have an impact on the efficiency