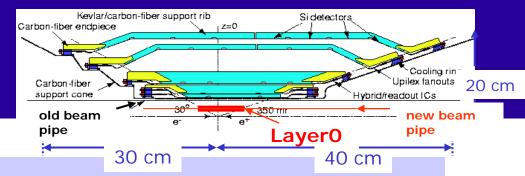
XVII SuperB Workshop and Kick Off Meeting: ETD3 Parallel Session

Status of SVT front-end electronics

M. Citterio

on behalf of INFN and University of Milan

Index


- SVT: system status
- Parameter space
- Latest hit rates
- Readout chip for strips
- Buffers and Clusters
- Efficiencies vs rate and dead times
- DAQ reading chain for L0-L5
- Conclusion

SVT System (1 of 2)

SVT Baseline for TDR

- Striplets in Layer0 @ R~1.5 cm
- 5 layers of silicon strip modules (extended coverage w.r.t BaBar)

- \rightarrow Triggered FE chips
- \rightarrow Triggered or data push FE chips

Upgrade Layer0 to thin pixel for full luminosity run

- more robust against background occupancy

Several progress on the baseline design in the last few months:

- Definition of the requirements for readout chips for striplets and strip:
 - Need to develop 2 new chips since existent chips do not match all the requirements : analog info, very high rates in inner Layers (0-3) & short shaping time, long shaping in Layers 4-5 to reduce noise for long modules.
 - Started to evaluate if readout architecture developed for pixel can be used for strips: no
 evident showstop up to now
 - First estimate of noise vs shaping time in each layer done: optimization still needed.

La Biodola 2011

SVT System (2 of 2)

- Detailed study of striplets performance in high background (occupancy >= 10%) just started with Fastsim.
- Updated background simulation: Rates in strip layers 1-5 increased by a factor 3 after a bug was discovered, more checks ongoing. Layer0 was not affected.
- Clearer definition of requirements for Layer0 pixels

Physics:

- Resolution of 10-15 um in both coordinates
- Total material budget <= 1% X0</p>
- Radius ~1.3-1.5 cm

Background (x5 safety included)

- Rate ~100-300 MHz/cm2 depends stronlgy on radius and sensor thickness
 - Timestamp of I us \rightarrow 5-10 Gbit/s per module
- TID ~ I5Mrad/yr
- Equivalent neutron fluence: 2.5 10¹³ n/cm2/yr
 - Standard CMOS MAPS marginal
- Several options still open and under development \rightarrow decision on technology in 2013
- Hybrid pixels: more mature and rad hard but with higher material budget
- CMOS MAPS: newer technology potentially very thin, readout speed and rad hardness challenging for application in Layer0.

La Biodola 2011

Parameter Space

Mauro Villa

Gangling/Occupancy/Simulations

Several unknowns: exact background rate; hit multiplicities

Trigger

```
frequency: 150 kHz (1.5 S.F)
```

jitter: 100 ns (the goal is to go down to 30 ns)

latency: 10 us (1.7 SF; LVL1 design is 6 us)

DAQ window: 100ns + 2 Time stamps or 300 ns

Time stamping: 33 MHz (T(BCO)=30 ns) Chip readout clock: 66 MHz (T(RDclk)=15 ns)

Hit rates from the last simulations

Assumptions:

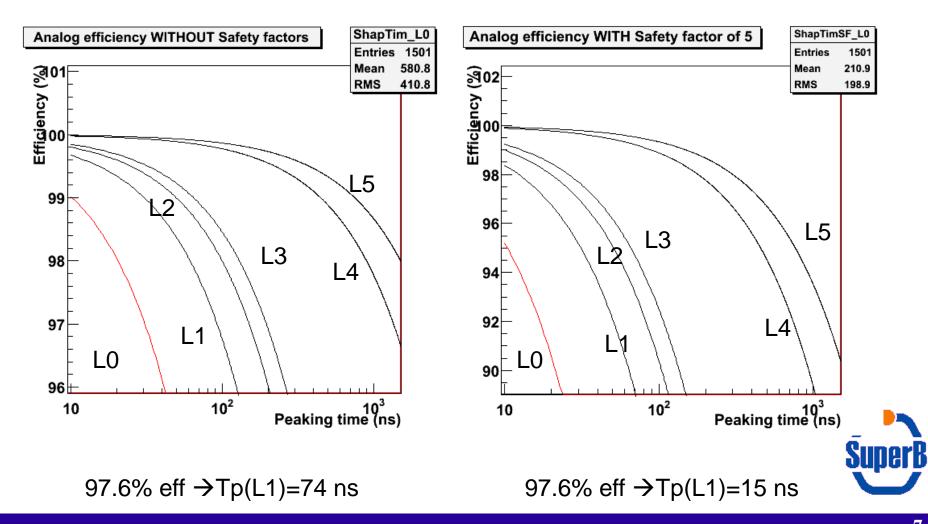
Strip dead time equal to 2.4 peaking time Strip rates as given by Riccardo Cenci (13/5/11):

New Values

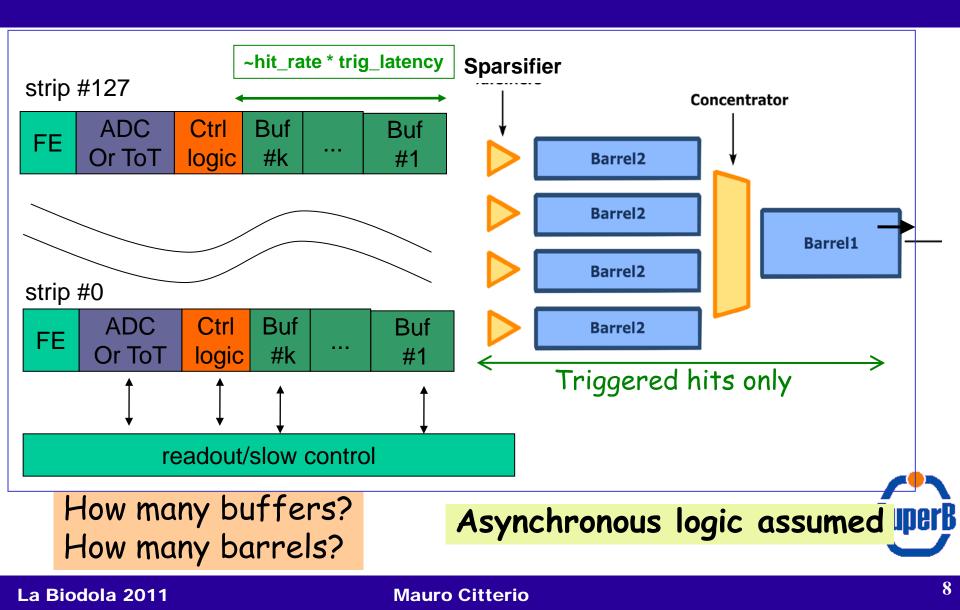
- L0: 2060 kHz/strip
- L1: 687 kHz/strip
- L2: 422 kHz/strip
- L3: 325 kHz/strip
- L4: 47 kHz/strip
- L5: 28 kHz/strip

(Old values)

(268 kHz/strip) (179 kHz/strip) (52.5 kHz/strip (?)) (21.9 kHz/strip) (18.7 kHz/strip)

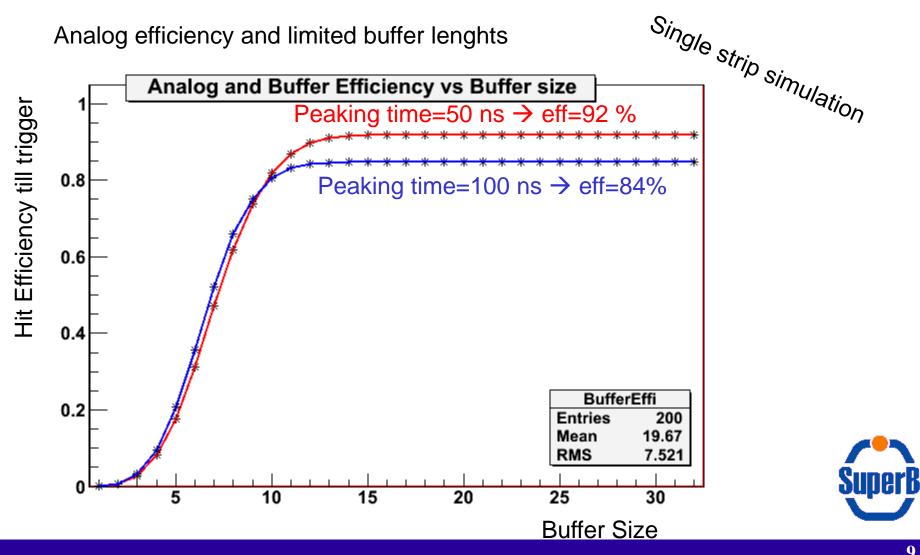


Efficiency vs peaking time

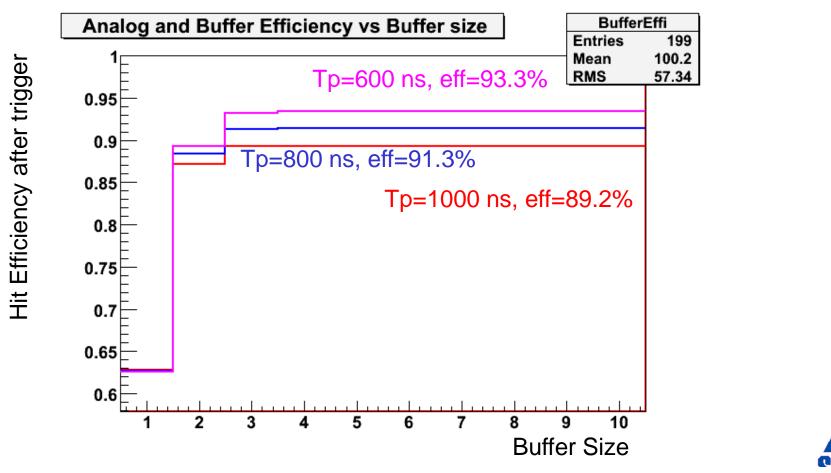

Mauro Villa

No safety factor

Safety factor of 5


Readout chip for strips

L1 simulation: 687 kHz/strip


Mauro Villa

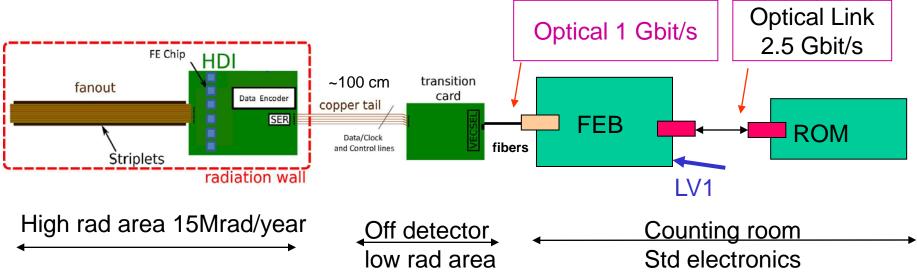
Analog efficiency and limited buffer lenghts

L4: 47 kHz/strip but longer deadtimes

Mauro Villa

For outer layers (smaller hit rate) the buffer size is not a problem: 5 buffers/strip are enough. The dominant parameter is the analog dead time.

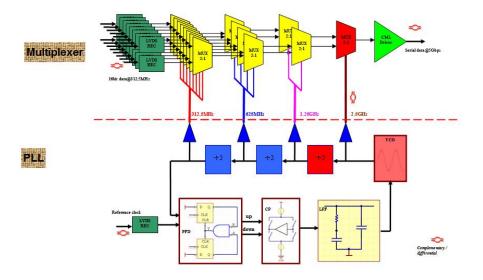
Efficiencies vs rate and dead times


Layer	С _D [рF]	t _p [ns]	ENC from R _s [e rms]	ENC [e rms]	Hit rate/strip [kHz]	MMC Efficiency
0	11.2	25	220	680	2060	(0.732)
1	26.7	50	650	1190	- 687	0.917
		100	460	930		0.841
2	31.2	50	830	1400	422	0.948
3	45.8	50	1480	2130	325	0.960
4	52.6	1000	340	820	47	0.893
5	67.5	1000	500	1010	28	0.934

Conditions: 20 buffers, 150 kHz trigger rate, 300 ns time window for all layers.

DAQ reading chain for L0-L5

DAQ chain independent on the chosen FE options


HDI +Transition card+FEB+ROM

HDI and transition card design is ongoing Data Encoder IC Specs are under discussion Rad-hard serializer to be finalized

→ looking into a low power/low speed version Copper tail: lenght vs data transfer are under study FEB + ROM as before

Low Speed / Low Power Serializer

The final design/prototyping phase of this Low Speed /Low Power IC did not start, yet.

SMU has received expression of interest by other experiment for such a development

SMU is looking into opening a collaboration on such IC (technology is 0.25 um Silicon on Sapphire) The block schematic of the SMU LOC1 shows that the typical power of the chip (~ 500 mW at 5 Gbps) has a substantial contribution coming from the PLL circuit.

A "Tunable" Serializer (data rate from 2.5 to 5 Gbps) can be obtained by changing the PLL.

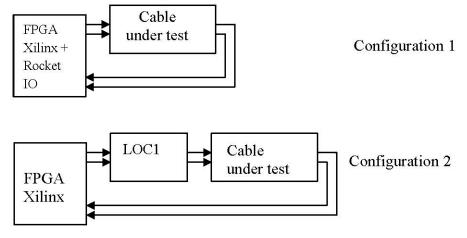
The goal is to reduce the power to ~ 250 mW at 2. 5 Gbps

Simulation results indicate that (courtesy of SMU) :

	LOCs1 (mW)	low power design
CML Driver	96	50%
PLL	173	80%
Others	187	30%

La Biodola 2011

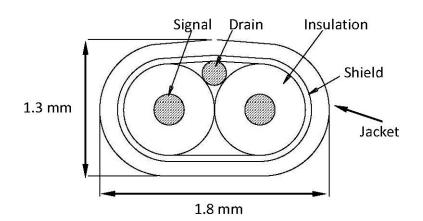
Data/Clock and Control Cables (1 of 2)

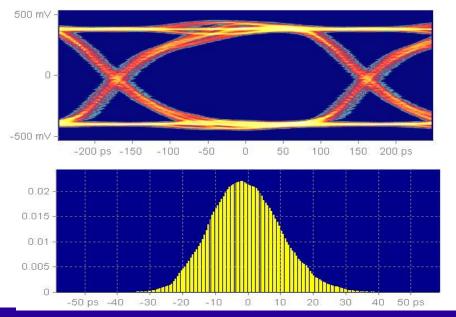

Kapton tail is probably not a solution for SuperB

- data speed is much higher than before
- differential/coaxial lines are not usually designed in flat circuits

Some small and flexible cables have been selected and tests are on-going

Some preliminary results are shown


- the reference lenght has been chosen ~ 1m (not to push on driving capability of devices)
- the test has been performed using
 - Xilinx FPGA + Rocket IO as a reference
 - Xilinx FPGA + LOC1 serializer as a comparison

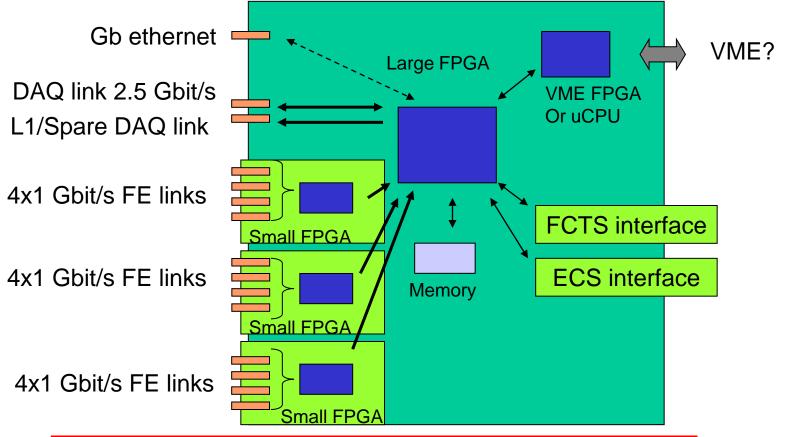


La Biodola 2011

Data/Clock and Control Cables (2 of 2)

Signal: 30 AWG, Solid Copper Clad Aluminum Differential Impedance ~ 100 Ohms +/- 5% Capacitance: 16 pF / ft Propagation Delay: < 2 ns/ft

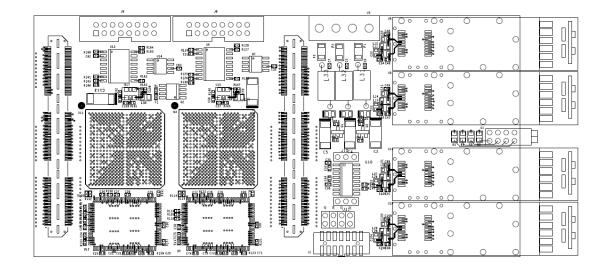
The preliminary measurements show that LOC1 can drive such a cable without substantial degradation even without pre/post emphasis


Eye diagram

BER probability density function

La Biodola 2011

SuperB-FEB Board schematics



FCTS, ECS protocols to be decided experiment-wide Large FPGA for data shipping and monitoring VME FPGA or uCPU might be included in the large FPGA.

Optical link mezzanine card for EDRO

Developed as a part of ATLAS/FTK project

4 optical links at 1 Gbit/s; FPGA Xilinx, 40/100 MHz clk (programmable)

PCB realized; now mounting components on first prototype Usable as link test mezzanine in SuperB (fall 2011)

Data Chain locations

HDI	Located near the detector
Transition cards	 Located approximately ~ 1 m from the HDI in a "not too hostile" environment. →We will try to maximize such a distance → Receivers and electrical to optical transition will be located on this card. It is an advantage to go further away form the detector.
DAQ	Located after the so called "radiation wall" For L1-L5 layers are needed ~ 120 optical links, equivalent to ~ 20 boards (each board will have up to 12 optical links) L0 layer Still to be addressed

Conclusions

First core of a Mini Monte Carlo for the Strip readout chip is available, containing

- Hit and trigger generation
- Analog inefficiency, buffers and barrels
- Several improvements can be foreseen: input hit multiplicities and correlations, etc

Mauro Villa

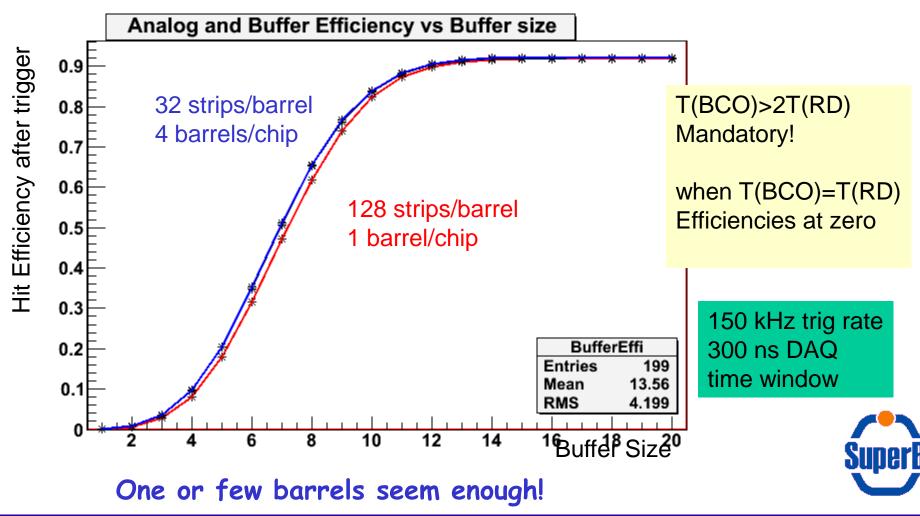
Good indications that for L1 the pixel readout architecture can be reused fruifully

Two parameters were found to be (very) critical:

- T(BCO) vs T(RD)
- Analog dead time

Analysis on other layers foreseen

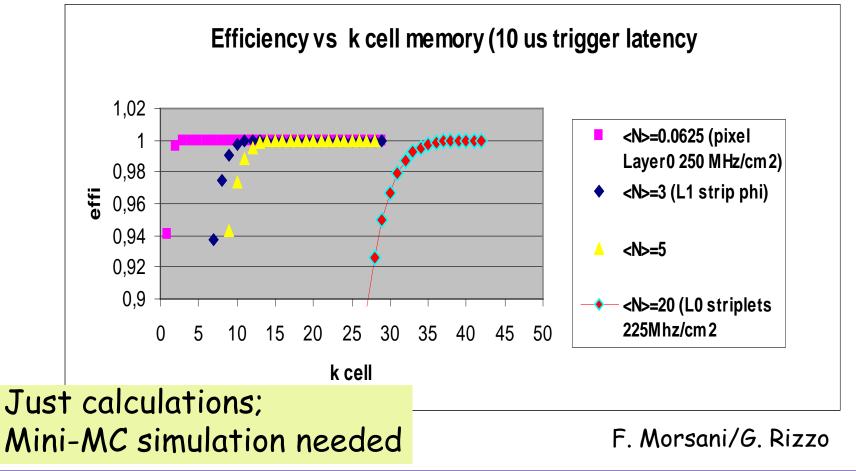
Data chain is progressing by defining all the elements of the chain



La Biodola 2011

Strip chip: how many barrels ?

Mauro Villa


Peaking time=50 ns

Number of buffers required for L0 striplets/L1 strip (preliminary)

Assume L0 @ 225 MHz/cm2, L1@5 MHz/cm2

L0 = 2 MHz/strip, L1=270 KHz/strip

