Update on Aging Studies

Rocky So Supervisor: Christopher Hearty University of British Columbia, Canada rockyso@physics.ubc.ca

DCH Parallel Session SuperB Collaboration Meeting May 29th, 2011

Recap

- Age chamber with a 100 mCi 55Fe source; measure 55Fe spectrum with a low-intensity source
- Monitor current, 55Fe peak location (gain), and ratio of small pulses to 55Fe interactions
 - Number of small pulses increase as Malter effect sets in.

Recap

- He:Isobutane 80:20 (no water)
- Same chamber aged since Dec is still alive

0	Anode Wire	20μ gold-plated tungsten sense wire 2000V
0	Field Wires,	bussed together and grounded 120μ gold-plated aluminum field wires
8	Bias Wires,	bussed together and at 1480V
	Bias wire 14 chamber	480V gives same field as an infinite BaBar

Fe55 Spectrum (Low-intensity)

Gain Correction by Density

- Assume that the first 2 months of aging has no effect on Fe55 peak location
- Assume linear relationship
- Assume ideal gas
- rms of pressure(mb)/temperature(K) is 84 channels
- rms after correction is 54 channels (distance from points to line)

Gain Drop Before Aging

- Babar saw 8% drop in gain
- 54 rms channels/1160 channels = 5% scatter after density correction, possibly due to gas composition variation
- Checked for reproducibility
- Current chamber probably not sensitive enough to see the gain drop
- > 77/23 He:Iso causes 38% increase in pulse height
- Gas fluctuated up to 79.6/20.4

- Build 2 new chambers using aluminum field wires
- Age one but not the other to correct for gas variation and composition uncertainty

Sense Wire Current with Hot Fe55

Charge Distribution along Wire

- Simulated charge by throwing random photons from source to hexagonal cell
- Probability of interaction inside cell is assumed to be proportional to length it traverses
- Central centimeter of wire receives 7.8% of total charge (effective length = 1cm/7.8% = 13cm)
 - Agrees with Boyarski

$$\frac{1.6C}{13cm} \cong 120mC/cm$$

Rocky So May 29, 2011

Outlook

- New chamber almost complete
- Continue to age chamber
- String dead chamber with new wires

