EMC Summary

Frank Porter & Claudia Cecchi

For the EMC group

June 1, 2011

EMC sessions

- 1. Davide Pinci BGO option
- 2. Valerio Bocci EMC electronics update
- 3. David Hitlin LYSO intrinsic resolution
- 4. Chih-Hsiang Cheng LYSO/CsI geometries and backgrounds
- 5. Gerald Eigen Backward EMC status
- 6. Matteo Cardinali Test beam analysis: silicon data
- 7. Elisa Manoni Test beam update on data
- 8. Stefano Germani Test beam Monte Carlo studies
- 9. Riccardo Faccini Test beam studies on shape variables
- Claudia Cecchi, Frank Porter Mainz or Frascati test beam in fall

Joint DGWG-Fastsim-EMC session

- Alejandro Perez Impact of bwd EMC on physics using the Sep2010 fastsim production
- ▶ Elisa Manoni − Updated study of HAD recoil $B \to K^* \nu \bar{\nu}$ vs bwd EMC
- ► Stefano Germani Impact of fwd PID material on π^0 reconstruction
- ► Sasha Rakitin Backward physics impact, $B \rightarrow \tau \nu$

Crystal properties

Crystal	LY^1	X_0	r_{M}	Rad	d(LY)/dT	$ au_{ m decay}$	$\lambda_{ m max}$
		cm	cm	hard	%/°C	ns	nm
Nal(Tl)	1	2.59	4.13	no	-0.2	230	410
LYSO(Ce)	0.83	1.14	2.07	yes	-0.2	40	402
CsI(TI)	1.65	1.86	3.57	no	0.3	1300	560
Csl	0.036	1.86	3.57	yes	-1.3	35	420
BGO	0.21	1.12	2.23	yes ²	-0.9	300	480
$PbWO_4$	0.0029	0.89	2.00	no	-2.7	10	420

(Mostly from RPP)

¹Relative to NaI(TI), small crystals, corrected for QE, room T

²Initial loss of LY, then stable at high doses (10s of Mrad)

What crystal for forward EMC?

LYSO is "ideal", except for price Lower cost options under investigation

- Possible hybrid solution: Keep outer rings of CsI(TI), inner rings LYSO
- ▶ BGO (maybe recycle L3 crystals?)
- Pure Csl (fast)
- Possible savings on mechanical structure keep existing Csl frame, replace each crystal with four of higher density (LYSO or BGO), or crystal-for-crystal if pure Csl

Issues

- Effect of backgrounds (Molière radius, $\tau_{\rm decay}$)
- Position resolution (Molière radius)
- Energy resolution (Light yield)
- Readout (Light yield)

Radiative Bhabha background, crystals, and shaping

RMS energy (MeV) in 5×5 array from radiative Bhabha background (Pinci)

RMS(MeV)	T _{dec} =T _{shaper} =50ns	T _{dec} =300ns T _{shaper} =100	T _{dec} =T _{shaper} =300ns	T _{dec} =1300ns T _{shaper} =600ns	T _{dec} =T _{shaper} =1300 ns
central barrel (Csl geom)	N/A	N/A	N/A	0.5	1.0
worst barrel (CsI geom)	N/A	N/A	N/A	2.7	4.9
external FWD (LYSO geom)	0.1 (no bias) 0.2 (CsI)	0.2 (no bias)	0.3	N/A	N/A
internal FWD (LYSO geom)	0.7 (no bias) 1.4 (CsI)	0.7	1.2	N/A	N/A

N.B., typically want shaping time = few times decay time

(Cheng) Does the larger CsI crystal size $4.7 \times 4.7 \text{ cm}^2$ perform worse (than $2 \times 2 \text{ cm}^2$) in presence of background? Fastsim study: Background (last summer) produces $\sim 2/3$ cluster > 20 MeV in each physics event.

No appreciable change in performance wrt backgrounds = \sim = \sim \sim

Intrinsic resolution

(Hitlin)

Achieved energy resolution is made of several components

Resolution on ¹³⁷Cs (662 KeV) for small crystals, PMT readout

- Non-linear processes in converting energy deposit to optical photons
- Variations in dopant (e.g., Ce) concentration

LNF beam test, May 2011

Beam test with electrons, E=100-500 MeV 5×5 projective LYSO array in aveolar with CMS APD (5 mm \times 5 mm) on each crystal

LNF beam test, position dependence study

BTF Test Beam Setup

Silicon Box

(Cardinali)

Plots below for 487 MeV Effect $\sim \pm 1\%$ Crystal width ~ 90 strips

Energy vs x-position

5X5 Matrix

Comparison of CERN, LNF test beam runs

LNF is with selection on Silicon position, CERN data is not [Effect of Si selection at 500 MeV is $2.9\% \rightarrow 2.4\%$] (Manoni)

EMC electronics

(Bocci)

Electronics layout

Crosstalk observed

Ch3= Ch3(real) + 2.2% of Ch4 Crosstalk map

Test beam resolution studies

(Faccini) $E_e = 1 \text{ GeV}$ Red: MC

Black: CERN test beam data

- Crosstalk Small improvement in agreement at low energy (LNF BT), may be more important at high energy
- Raising threshold to eliminate noisy crystals Doesn't improve agreement
- ▶ Correcting for different lateral shower pattern Improves agreement slightly $(2.3\% \rightarrow 2.6\%)$
- Correcting for tilt Doesn't improve agreement
- Intercalibration with electrons Same result as MIPS
- Pedestal fluctuations negligible (Cardinali)

Data-MC comparisons (LNF test beam)

- ► Even large intercalibration error cannot explain resolution
- Energy-independent beam energy spread cannot explain resolution

(Germani)

Future test beam

Test beam planned in fall

- Improved uniformity
- Sum 2 APDs per crystal
- Electronics crosstalk eliminated
- Possible use of MAMI (Mainz) tagged photon beam
 - E_{γ} from \sim 30 MeV to \sim 1.5 GeV
 - ightharpoonup Well-measured γ energy
- ► LNF beam reserved 3 weeks in October

MAMI floorplan

Backward EMC prototype status

Spiral strips

Straight wedges Lead sheets (2.8 mm)

MIP peak = 5.9 p.e.

Uniformity

(Eigen)

Backward EMC status

- ▶ Prototype is $6 \times 24 = 144$ readout channels
- Prototype, to be done
 - Strip production still bottleneck (spiral strips)
 - Uniformization procedure (e.g., black dots)
 - Acquire 30 m Y11 fiber
 - Borrow 3 more SPIROC boards
 - Clear fibers and calibraton board from Prague
 - Plastic filler, Diffuse reflector, paint
- Manpower to improve after summer
- Looking for collaborators
- Cost estimate \$450k

Physics impact of backward EMC

Sept 2010 production bug in backward EMC simulation; validated workaround exists, performance studies have been redone.

Figure-of-merit: $\frac{S}{\sqrt{S+B}}$. Compute

$$\delta \equiv \frac{\frac{S}{\sqrt{S+B}} \Big|_{\text{w/BWD}} - \frac{S}{\sqrt{S+B}} \Big|_{\text{noBWD}}}{\frac{S}{\sqrt{S+B}} \Big|_{\text{noBWD}}}$$

(Perez) $B \to K^* \nu \bar{\nu}$ with semileptonic tag (Manoni) $B \to K^* \nu \bar{\nu}$ with hadronic tag Result of both analysis is that backward EMC provides gains (δ -values) of 6-10%, depending on mode. (Perez), (Rakitin) Separate $B \to \tau \nu$ analyses with semileptonic and hadronic tags Find $\delta \sim 3-6\%$, depending on mode.

Forward PID impact on π^0 reconstruction

Looked at impact of fTOF and FARICH on photon and π^0 resolution and efficiency.

No significant impacts found except on low energy photon efficiency.

fTOF is $\sim 10\%~X_0$, next to DCH FARICH is $\sim 25\%~X_0$, next to EMC (Germani)

EMC Conclusions

- Much effort on prototype test beams (FWD and BWD)
- ▶ Big question: If we can't afford LYSO, what crystal(s) do we use for forward EMC?
- New results on effect of backward EMC, forward PID
- ▶ Many other things to do, not discussed here
- ▶ Plenty of room for new collaborators (Please!)