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We want to calculate the correlated amplitude for the D and the D to decay to
the states α and β at times t1 and t2 respectively, where the times are measured
in the center-of-mass (CM) system and t = 0 is the time of the e+e− → cc
production. Because the Ψ(3770) is JPC = 1−− state, we antisymmetrize the
amplitude with respect to charge conjugation.

M =
1√
2

[
〈α|H|D0(t1)〉〈β|H|D0

(t2)〉 − 〈β|H|D0(t2)〉〈α|H|D0
(t1)〉

]
(1)

The time evolution of the D0–D0 system is described by the Schrödinger equation

i
∂

∂t




D0(t)

D0(t)



 =



M −
i

2
Γ








D0(t)

D0(t)



 , (2)

where the M and Γ matrices are Hermitian, and CPT invariance requires M11 =
M22 ≡ M and Γ11 = Γ22 ≡ Γ.



The two eigenstates D1 and D2 of the effective Hamiltonian are

|D1,2〉 = p|D0〉 ± q|D0〉 , |p|2 + |q|2 = 1 . (3)

The corresponding eigenvalues are

λ1,2≡m1,2−
i

2
Γ1,2=



M−
i

2
Γ



±
q

p



M12−
i

2
Γ12



 , (4)

where m1,2, Γ1,2 are the masses and decay widths and

q

p
=

√√√√√√√
M∗

12 − i
2
Γ∗
12

M12 − i
2
Γ12



→ ≈
√√√√√√
M∗

12

M12
for Bd



 . (5)

The proper time evolution of the eigenstates of Eq. 2 is

|D1,2(t)〉 = e1,2(t)|D1,2〉, e1,2(t) = e[−i(m1,2−
iΓ1,2

2 )t]. (6)

A state that is prepared as a flavor eigenstate |D0〉 or |D0〉 at t = 0 will evolve
according to

|D0(t)〉=
1

2p

[
p(e1(t)+e2(t))|D0〉+q(e1(t)−e2(t))|D0〉

]
(7)

|D0(t)〉=
1

2q

[
p(e1(t)−e2(t))|D0〉+q(e1(t)+e2(t))|D0〉

]
. (8)

We adopt a version of the standard notation

Γ =
Γ1+Γ2

2
, x =

m1−m2

Γ
, y =

Γ1−Γ2

2Γ
. (9)



!"#$!

%&' %&( %&) %&* + +&' +&( +&) +&*

,
-.
/"
#$
01
23
4
.
&5

!*%

!)%

!(%

!'%

%

'%

(%

)%

*% !!"!

!!#!

!!$!

!!%!

!!&!

!!!"#$%&!"#$%&

!!!'"$()!!*+,+&

!"#$%

!& !'() ' '() & &() *

+
"#
$
%

!&

!'()

'

'()

&

&()

*

!"#$%&

!#'#

!#(#

!#)#

!#*#

!#+#

!!!"#$%&!"#$%&

!!!'"$()!!*+,+&

Michael D. Sokoloff 19 Portoroz, 12 April 2011 

!"#$%

!& !'() ' '() & &() *

+
"#
$
%

!&

!'()

'

'()

&

&()

*

!"#$%&&'()*

!$+$

!$,$

!$-$

!$.$

!$/$

!!!"#$%&!"#$%&

!!!'"$()!!*+,+&

CPV-allowed plot, no mixing (x,y) = 
(0,0) point:   Δ χ 2 = 109.6,   CL = 1.56 x 
10 −24 ,   no mixing excluded at 10.2σ  

No CPV (|q/p|, φ) = (1,0) point:    
Δ χ 2 = 1.218,   CL = 0.456 ,   
consistent with CP conservation 

Fit to all time-dependent CPV 
measurements. 



Forms of M and |M|2
After a bit of algebra we can write the matrix element as

2
√
2M =




q

p
AαAβ −

p

q
AαAβ



 [e1(t1)e2(t2) − e1(t2)e2(t1)] (10)

+ (AαAβ − AαAβ) [e1(t1)e2(t2) + e1(t2)e2(t1)]

which has the form

2
√
2M = X(e11e22 − e12e21) + Y (e11e22 + e12e21) . (11)

From this one calculates

8|M|2 = e−Γ(t1+t2) × { XX∗ (cosh yΓ∆t − cos xΓ∆t) (12)
− 2*(XY ∗) sinh yΓ∆t + 2+(XY ∗) sinxΓ∆t
+ Y Y ∗ (cosh yΓ∆t + cosxΓ∆t }

For xΓ∆t, yΓ∆t , 1 this can be approximated by

4|M|2 = e−Γ(t1+t2) ×




XX∗




(x2 + y2)

4
(Γ∆t)2



 (13)

− *(XY ∗) yΓ∆t + +(XY ∗)xΓ∆t

+ Y Y ∗


1 +
(y2 − x2)

4
(Γ∆t)2










• Y is the unmixed amplitude

• X is the mixing amplitude

• XY ∗ controls the interference terms in the mixing rate



Some General Observations

• Each of X and Y is the difference of two products of amplitudes; the difference
reflects the charge conjugation symmetry of the initial D0D

0
state.

• The components of the decay rate proportional to the real and imaginary parts
of XY ∗ corresponds to the interference of the direct and mixing amplitudes
to a common final state.

• The relative time-dependence dependence of the interference term is propor-
tional to y′ Γ∆t where y′ = y cos δ + x sin δ with XY ∗ = Ceiδ (C and δ real).

• The phase δ depends upon the phase of p/q and also on both the final state
α and the final state β.

• The interference term is odd in Γ∆t while the pure mixing and unmixed terms
are even in Γ∆t. Thus, the interference term disappears when considering only
time-integrated decay rates.

We make some back-of-the envelope calculations of sensitivity to mixing and CP
violation making a number of assumptions. The numbers must be refined to be
considered more than rough estimates. However, they can guide thinking about
which channels warrant detailed study. We will assume that

• we can scale from CLEO-c’s 281 fb−1 sample to a SuperB sample using a
factor of 1500. This corresponds about 500 fb−1 of data with a somewhat
lower efficiency for tighter cuts related to vertex resolution.

• we measure time-dependent asymmetries for |∆t| > 2τD0 perfectly and we
have no sensitivity to asymmetries for lower values of |∆t|.

• we sometimes estimate the fraction of events with |∆t| > 2τD0 to be 1/e2 and
the average value of |Γ∆t| for these events to be 3.



CP even versus CP even

For two CP-even eigenstates α and β,

Y = 0 (14)

X =




q

p
−

p

q



AαAβ .

so the rate is

|M|2 = e−Γ(t1+t2) ×
∣∣∣∣∣∣∣

q

p
−

p

q

∣∣∣∣∣∣∣

2

|Aα|2 |Aβ|2



x2 + y2

4



 (Γ∆t)2 . (15)

In the limit that CP is a good symmetry, this rate goes to zero. To estimate
what might be possible at SuperB, we take the numbers of K∓π± versus CP
even events observed by CLEO-c (605), scale by the approximate ratio of K−K+

plus π−π+ events observed (≈ 0.13) [to account for the value of |Aα|2 |Aβ|], and
scale by the nominal relative luminosity. This procedure gives approximately
120K as the coefficient of (x2 + y2) (Γ∆t)2/4. Using (x2 + y2) (Γ∆t)2/2 as an
estimate of the time integral, and taking x2 + y2 = 10−4, the integrated signal
will be about ∣∣∣∣∣∣∣

q

p
−

p

q

∣∣∣∣∣∣∣

2

× 6 events . (16)



K−π+ versus K−π

A similar result obtains for common final states such as K−π+. If α = β then
Aβ = Aα and Aβ = Aα. Again, the unmixed amplitude goes to zero. However,
the pure mixing term does not require CP violation to be non-zero.

Y = 0 (17)

X =




q

p
AαAα −

p

q
AαAα



 .

In this case, Aα corresponds to the Cabibbo-favored amplitude and Aα to the
doubly Cabibbo-suppressed amplitude. With Aα = keiδAα the rate can be writ-
ten

|M|2 = e−Γ(t1+t2) ×
∣∣∣∣∣∣∣

q

p
k2ei2δ −

p

q

∣∣∣∣∣∣∣

2

|Aα|2 |Aα|2



x2 + y2

4



 (Γ∆t)2 . (18)

As a first approximation, we can ignore both the doubly Cabibbo-suppressed
amplitude and CP violation. In this case

|M|2 ≈ e−Γ(t1+t2) × |Aα|2 |Aα|2



x2 + y2

4



 (Γ∆t)2 . (19)

CLEO-c observes 600 K−π+, K+π− events, which corresponds to 2 |Aα|2 |Aα|2.
Scaling by relative luminosities, and again using 10−4 for (x2+y2), we can project
a mixing signal of 23 events in this channel and a similar number in K+π−

versus K+π−. While differences nominally can be due to direct CP violation,
indirect CP violation, or statistical fluctuation, given the existing HFAG bounds
on direct and indirect CP violation, any variation we observe in this channel will
be predominantly due to statistical fluctuations.



Opposite-sign semileptonic final states

For opposite-sign semileptonic decays we can choose α = K−(+ν and β = K+(−ν
for which

Y = AαAβ (20)
X = 0

The rate is proportional to

|M|2 = e−Γ(t1+t2) × |Aα|2 |Aβ|2


1 +
(y2 − x2)

4
(Γ∆t)2



 . (21)

CLEO-c has not reported a signal in the corresponding opposite-sign dilepton
channel, but we can optimistically estimate that the rate will be similar to that for
(K−π+) versus K+π−. This allows us to estimate 900K K−e+νe versus K+e−νe

events.

The only signature of mixing in this final state is the quadratic departure from
purely exponential decay which is proportional to (y2−x2). This is less than one
part in 104, significantly less than the rate of statistical fluctuations. This final
state has no sensitivity to CP violation.



Same-sign semileptonic final states

For same-sign semileptonic decays we can choose α = β = K−(+ν. In this case

Y = 0 (22)

X = −
p

q

(
A(D0 → K−e+νe)

)
.

The corresponding rate is

|M|2 = e−iΓ(t1+t2)

∣∣∣∣∣∣∣




p

q



AαAβ

∣∣∣∣∣∣∣

2 


x2 + y2

4



 (Γ∆t)2 . (23)

Using the same assumptions as for the opposite-sign dilepton events, we again
estimate 23 mixing events in each of K−e+νe versus K−e+νe and K+e−νe versus
K+e−νe.

This is a bit optimistic as the branching fraction for Keν is less than that for
Kπ, and also because the efficiencies are likely to lower, the backgrounds higher,
and the vertex resolutions worse.



Semileptonic versus a CP eigenstate - I

The correlated decays of D0D
0
into a CP eigenstate and and semileptonic final

state are also (relatively) easy to understand. Consider Aα = A(D0 → K−e+νe)
and Aβ = A(D0 → K−K+) as an example such a final state. In this case

Y = AαAβ ; X = −
p

q
AαAβ (24)

The interference terms proptional to y Γ∆t and xΓ∆t in the decay rate, see Eqn.
(13), are proportional to the real and imaginary parts of

XY ∗ = (−
p

q
AαAβ) (A∗

αA∗
β) = −

p

q
|Aα|2 |Aβ|2 (25)

which are directly proportional to the real and imaginary parts of p/q. There
is no sensitivity to strong phase differences between decays of D0 and D

0
to the

same final state in this case. If one replaces the CP even final state with a CP
odd final state, the interference term changes sign

XY ∗ = (−
p

q
AαAβ) (−A∗

αA∗
β) = +

p

q
|Aα|2 |Aβ|2 . (26)

The (small yΓ∆t, small xΓ∆t) limit for D0 → K−(+X opposite CP eigenstates
is

|M|2 = e−Γ(t1+t2) |Aα|2 |Aβ|2 × (27)




1 ∓ *(

p

q
) yΓ∆t ± +(

p

q
)xΓ∆t +

y2

2
(Γ∆t)2





.



Semileptonic versus a CP eigenstate - II

For D
0 → K+(−X detected in conjunction with a CP even final state, (−p/q) in

XY ∗ becomes (+q/p) and Aα = A(D
0 → K+(−X). As a first approximation,

the difference between positive and negative decay time distributions will be
proportional to 

*(
p

q
) y − +(

p

q
)x



 × Γ |∆t| = y′Γ |∆t| (28)

for D0 → K−(+X and to


*(
q

p
) y − +(

q

p
)x



 × Γ |∆t| = y′′Γ |∆t| (29)

for D
0 → K+(−X. For each sign of Keν we estimate 1500 × 150 = 225K re-

constructed events based on CLEO-c’s observed rates of Xeν versus K−K+ and
π−π+. Of these we estimate that 1/e2 (30K) will be produced with |Γ∆t| > 2
with 〈|Γ∆t|〉 = 3. Assuming y′ = 0.01, the y′(′)Γ |∆t| term will create a surplus
of 913 events for ∆t < 0 and a deficit of 913 events for ∆t > 0 out of ≈ 60K
events with Γ |∆t| > 2 for an asymmetry of 1827 ± 247 events.



Same-sign semileptonic versus hadronic - I

The correlated decays to a semileptonic final state and a hadronic non-CP eigen-
state are somewhat more complicated. For the final state (K−π+,K−e+νe) we
can write

Aα = A(D0 → K−π+) = aei(δ+φ)

Aα = keiδKπAα

Aβ = A(D0 → K−e+νe)
Aβ = 0

where a, δ, φ, k and δKπ are real numbers. Writing Aα in the form aei(δ+φ) will be
useful when we consider final states including a K+π−. The factor k ≈ tan2 θC
is the ratio of the magnitudes of the doubly Cabibbo-suppressed (DCS) and
Cabibbo-favored (CF) amplitudes. The angle δKπ is the relative strong phase
between the CF and DCS amplitudes to the same final state. The mixing and
direct amplitudes for (K−π+,K−e+νe) are

X = −
p

q
AαAβ

Y = keiδkπAαAβ

The mixing, interference, and direct terms in the decay rate are

XX∗ =

∣∣∣∣∣∣∣

p

q

∣∣∣∣∣∣∣

2

|Aα|2|Aβ|2

XY ∗ =
p

q
e−iδKπk|Aα|2|Aβ|2

Y Y ∗ = k2|Aα|2|Aβ|2



Same-sign semileptonic versus hadronic - II

The (small yΓ∆t, small xΓ∆t) limit for the (K−(+X,K−π+) decay rate is

|M|2 =
1

4
e−Γ(t1+t2) |Aα|2 |Aβ|2 ×






∣∣∣∣∣∣∣

p

q

∣∣∣∣∣∣∣

2 


x2 + y2

4



 (Γ∆t)2 (30)

−


*(
p

q
) cos δKπ + +(

p

q
) sin δKπ



 k yΓ∆t

+



+(
p

q
) cos δKπ − *(

p

q
) sin δKπ



 k xΓ∆t

+k2



1 +




y2 − x2

4



 (Γ∆t)2








.

To make a back-of-the envelope sensitivity estimate, we consider

• the limit p = q and cos δKπ = 1

• wth x = 0, y = 0.01 and k2 = 0.003.

The rate now has the form

|M|2 ∝ k2 − ky(Γ∆t) +
y2(1 + k2)

4
(Γ∆t)2 . (31)



Same-sign semileptonic versus hadronic - III

For the (K−(+X,K−π+) with

• the limit p = q and cos δKπ = 1

• and assuming x = 0, y = 0.01, k2 = 0.003.

the rate now has the form

|M|2 ∝ k2 − ky(Γ∆t) +
y2(1 + k2)

4
(Γ∆t)2 , (32)

We have used Mathematica to compute the total rate and the rates for |Γ∆t| > 2
in terms of the corresponding opposite-sign rate. As a good approximation,

• the total rate just the doubly-Cabibbo suppressed rate, 0.003,

• the integrated rate for Γ∆t < −2 is ≈ 3.3 × 10−4, and

• the integrated rate for Γ∆t > 2 is ≈ 1.1 × 10−4.

CLEO-c observes ≈ 1175 events in each of (X+e−νe,K−π+) and (X−e+νe,K+π−).
In SuperB we therefore expect

• 1.76 × 106 events for each opposite-sign combination,

• ≈ 5300 events for each same-sign combination,

• 584 observed with Γ∆t < −2 and 191 observed with Γ∆t > 2

• for a summed asymmetry of 800± 40 events.



CP eigenstates versus hadronic non-CP - I

The correlated decays to a CP eigenstate and a hadronic non-CP eigenstate
are somewhat more complicated. Consider, as a first example, the final state
(K−π+,K−K+). We can write

Aα = A(D0 → K−π+) = aei(δ+φ)

Aα = keiδKπAα

Aβ = A(D0 → K−K+)
Aβ = Aβ

The mixing and direct amplitudes for (K−π+,K−K+) are

X =




q

p
keiδKπ −

p

q



AαAβ

Y = (1 − keiδKπ)AαAβ

As is well-known, the time-integrated rate is dominated by the term

Y Y ∗ = (1 − 2k cos δKπ + k2)AαA∗
αAβA∗

β (33)

which depends linearly on cos δKπ. CLEO-c observes about 60 events in each sign
of (K∓π±,K−K+.

• assuming 2k cosδKπ ≈ 2 ·
√
0.003 · 1,

• the total signal is ≈ 180K events ±425,

• differs from the 2k cosδKπ = 0 value by ≈ 20K ±425,

• indicates we can measure cos δKπ with 2% precision.



CP eigenstates versus hadronic non-CP - II

The real and imaginary parts of the interference term are

*(XY ∗) = k



1 +

∣∣∣∣∣∣∣

q

p

∣∣∣∣∣∣∣

2






*



p

q



 cos δ − +



p

q



 sin δ



 − *



p

q



 (1 + k2) (34)

+(XY ∗) = k



1 −
∣∣∣∣∣∣∣

q

p

∣∣∣∣∣∣∣

2






+



p

q



 cos δ + *



p

q



 sin δ



 − +



p

q



 (1 + k2)

Again, we estimate sensitivity to mixing

• in the limit p = q

• assuming we detect 1/e2 of the events with |Γ∆t| > 2 with average |Γ∆t| = 3,

• assuming 1 − 2k cos δKπ = 0.89 and y = 0.01.

We then expect to observe an asymmetry of 650 ± 156 events.



Summary of Calculations to Date

We have made rough estimates of SuperB sensitivity to mixing assuming

• events rates scale from CLEO-c,

• SuperB integrated L = 500 fb−1,

• we can cleanly separate |Γ∆t| > 2 from |Γ∆t| < 2,

• p/q ≈ 1,

• y ≈ 0.01

channel type of measurement figure of merit

K−K+, π−π+ v K−K+, π−π+ integrated |q/p − p/q|2 × 6 events

K−π+ v K−π+ + cc integrated 46 events

K−e+ν v K−e+ν + cc integrated 46 events

K−e+ν v K−K+, π−π+ + cc TDA 1887 ± 247 events (∼ 7σ)

K−e+ν v K−π+, + cc TDA 800 ± 40 events (∼ 20σ)

K−π+ v K−K+, π−π+ + cc integrated cos δKπ ∼ ±2%

K−π+ v K−K+, π−π+ + cc TDA 650 ± 156 events (∼ 4σ)

Sensitivity to mixing (and CP violation) is greatest when the interference term is
as large as possible compared to the direct correlated decay term. This requires
“same-sign” decays with a DCS amplitude interfering with a CF amplitude.



Future Directions - I

The channel studied with the greatest mixing/CP violation reach is

• (K−e+νe, K−π+) + cc

where the measurable time-dependent asymmetry is estimated to be 20σ. Other
correlated final states whose rates will be dominated by one or more DCS ampli-
tudes and will enjoy a relatively large interference terms include

• K−e+νe, K−π+π0 + cc

• K−e+νe, K−π−π+π+ + cc

• K−π+, K−π+π0 + cc

• K−π+, K−π−π+π+ + cc

• K−π+π0, K−π−π+π+ + cc

“Same-sign” events in which both Ds are observed in the same hadronic final
state, but at different points in phase space (the Dalitz plot, for three-body
channels) may also manifest large time-dependent assymmetries, at least in parts
of the phase space. If this is true, we may be able to exploit

• K−π+π0, K−π+π0 + cc

• K−π−π+π+, K−π−π+π+ + cc

will similar benefit.



Future Directions - II

In traditional (single-tag) analyses, the final state K0
Sπ

−π+ has been especially
useful for studying mixing as the interference of CF and DCS amplitudes pro-
duces time-dependent rate variations as a function of position in the Dalitz plot.
Because there are intermediate amplitudes which are CP eigenstates, both x and
y can be extracted without confusion due to strong phase differences between
CF and DCS amplitudes. This suggests the possibility that the correlated final
states

• K−e+νe, K0
Sπ

−π+ + cc

• K−π+, K0
Sπ

−π+ + cc

• K−π+π0, K0
Sπ

−π+ + cc

• K−π−π + π+, K0
Sπ

−π+ + cc

• K0
Sπ

−π+, K0
Sπ

−π+ + cc

will be similarly useful.



Conclusions

We have made rough estimates of SuperB sensitivity to mixing assuming

• events rates scale from CLEO-c,

• SuperB integrated L = 500 fb−1,

• we can cleanly separate |Γ∆t| > 2 from |Γ∆t| < 2,

• p/q ≈ 1,

• y ≈ 0.01

It appears that

• Sensitivity to mixing (and CP violation) is greatest when the interference
term is as large as possible compared to the direct correlated decay term.
This requires “same-sign” decays with a DCS amplitude interfering with a
CF amplitude.

• K−e+νe, K−π+ + cc allows 20σ measurement of mixing

• at least 5 other same-sign channels promise similar mixing sensitivity

• 2 additional channels with same sign decays to different points in phase space
are probably similarly sensitive

• correlated final states with at least one K0
Sπ

−π+ may also be useful

• measuring time-dependent asymmetries down to |Γ∆t| = 1, can increase the
effective statistics substantially.

Time-dependent measurements of asymmetries in correlated decays at the Ψ(3770)
may allow mixing parameters to be determined with 1% - 2% precision.


