

Vibration Budget For SuperB

XVII SuperB Workshop and Kick-off Meeting Elba 30 May 2011

Kirk Bertsche

- Vibration requirements
 - Effect on luminosity
 - Vibration sensitivity, esp. of IR
 - Proposed vibration budget
- Expected vibrations and their effects
 - Ground motion at LNF
 - Expected vibration of arc quads
 - Expected vibration of IR cryostat
- General site requirements

- PAC2011 paper (THP069)
 - Investigated final focus quads
 - Updated to latest lattice (v12)
 - Re-analyzed X and Y' sensitivities
- Generated general site vibration specs

- Y position has very tight tolerance:
 - 8 nm relative beam displacement at IP reduces luminosity by 1%
- Other dimensions much looser:
 - Y angle: 200 urad relative displacement at IP reduces luminosity by 1%
 - X position: 2 um relative displacement at IP reduces luminosity by 1%

Vibration Transfer Functions of IR Components

ATIONAL ACCELERATOR LABORATO

- HER and LER IR magnets in shared cryostat move together
- Both beams move same direction and nearly same amount at IP due to cryostat motion
- Relative displacement reduced by ~100x!
- But: sensitive to cryostat rotation (torsion) Tends to move magnets and beams in opposite directions Need to control torsional vibrations

Cryostat Motion

Cryostat motion at end	Cryostat to IP xfer fn
Transverse offset in y	~ 0.002
Linear tilt in y	~ -0.002
Quadratic deflection in y	~ 0.007
Rigid rotation along z	~ 0.01 m/rad
Torsional rotation along z	~ 0.014 m/rad

- Coupled linear motion in cryostat should cancel ~99% of effect of single QD0 motion
 - Sounds very optimistic
 - Assume worst case ~5x worse: (transfer fn ~ 0.035 instead of ~0.007)
- Rotational motion needs to be limited
 - Avoid building torques into IR magnet support system

Element	RMS motion per element	Xfer Fn (RMS sum, both rings)	RMS differential displacement @ IP	
			no feedback	with feedback
Cryostat linear	< 800 nm	< 0.05	< 40 nm	< 4 nm
Cryostat rotation	< 2 urad	0.02 m/rad	< 40 nm	< 4 nm
Final focus quads, excluding IR	< 200 nm	< 0.2	< 40 nm	< 4 nm
Arc quads	< 200 nm	< 0.14	< 30 nm	< 3 nm
Total (two rings)			< 75 nm	< 7.5 nm

- Budget applies to integrated vertical RMS motion > 1 Hz
- Can allow 1.4x larger motion in arcs, if necessary
- Beam feedback: assumes >10x reduction of motion at IP, needs > ±400 nm (5x RMS) dynamic range

- Horizontal
 - Excitation usually less than vertical (~1/3?)
 - Horizontal vibration transfer functions up to 15x larger than vertical (arc quads are worst contributor)
 - Horizontal vibration tolerance 250x vertical
- Vertical angle (Y')
 - Arc quads are worst contributor
 - Vertical angle effects ~8x less significant to luminosity than vertical position

Ground Motion at LNF

PSD of ground motion in the basement of the new guest house

From Bolzon et al, XI SuperB General Meeting (Dec 2009, Frascati) and IPAC10 (Kyoto, Japan)

Vibration Attenuation with Depth

From Bolzon et al, XI SuperB General Meeting (Dec 2009, Frascati) and IPAC10 (Kyoto, Japan)

Idealizations For Error Budget

NATIONAL ACCELERATOR LABORATOR

- Assumes:
 - Ground vibration wave velocity 100-200m/s
 - Cantilever ~ 2 m
 - Base 1-2 m

- Cantilever will also have resonances 3-30 Hz
 - Damp; push freqs as high as possible

Vibration Amplification of Magnet Supports

- Magnet supports expected to slightly amplify ground motion between 10-100 Hz
- Applies to all arc quads and final focus quads except for quads in cantilevered IP cryostat

- Need >100 Hz bandwidth, >10x vibration reduction at LF, >±400 nm dynamic range V (and >±5 um H)
- Fast dither system
 - Proposed by Bertsche et al, PAC09 we6pfp053 (2 um x 25 um dynamic range)
- Fast IP feedback system
 - Proposed by Drago et al

Assumes underground machine at LNF

- •Assumes underground machine at LNF
- •~4 nm worst case
- •Need < 8 nm for < 1% loss of luminosity

Applicable to alternate locations or surface sites

Alternative Vibration Criteria from Architectural Acoustics

- From Byron Davis, "High End Vibration Criteria", Vibro-Acoustic Consultants, San Francisco, CA
- NIST-A seems to be acceptable for tunnel floor

~100 nm RMS ground motion integrated from 1Hz up

- Peak-to-peak signal generally taken as 3x-8x the RMS (pure sine wave is 2.8x)
- Ground motion in arcs has margin: can be ~1.4x larger
- Suggested specs:
 - Dz <300 nm peak-to-peak in collider hall
 - Dz <300 nm peak-to-peak in final focus
 - Dz <500 nm peak-to-peak in arcs (tunnel)
 - Dx <1 um? peak-to-peak everywhere</p>

Summary

- Cantilevered cryostat should be designed for low vibration
 - Damp resonances and push > 10 Hz
 - Support cryostat on both sides of detector door
 - Avoid building torques into magnet supports
- Beam feedback should extend to 100Hz, provide > 10x vibration reduction at LF, provide > ±400 nm dynamic range (vertical)
- Site vibration should meet specs on previous slides
- Given the above, vibration not expected to impact luminosity for SuperB