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SUSY & the role of flavour
• SUSY motivated

  naturalness problem
  

  gauge coupling unification

  dark matter, strings, ...

• many ‘soft’ parameters in absence of a theory of SUSY 
breaking

• flavour probes the SUSY breaking
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Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.

3

∝ y
2
t
Λ

2
UV

(

δ
u,d,e,ν
ij

)

AB
≡

(

M2

ũ,d̃,ẽ,ν̃

)AB

ij

m2

f̃

                                              33 flavour-violating parameters 
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Fig. 2. (a) Second order evolution of the three coupling con- 
stants in the minimal  SUSY model. MsusY has been fitted by re- 
quiring crossing of the couplings in a single point. The two lower 
plots show t h e z  z distribution for the SUSY scale MsusY (b) and 
for the unification scale MGo x (c) taking into account their 
correlation. 

The widths of the Z 2 distributions are dominated 
by the error of c~3 (Mz). We have repeated the fits for 
different values of c% (Mz) and the results are shown 
in figs. 3a and 3b. One observes that Msusv is a steep 
function of cq: for c%(Mz) between 0.10 and 0.12, 
Msvsv varies between 30 TeV and 10 GeV. The 
68% CL range of c~3 values, obtained by averaging 
DELPHI results (see eq. (26)),  is also indicated. 

Until now the assumption was made that the slopes 
change from SM values to SUSY values exactly at 
Msvsv. This abrupt change is unphysical, not only 
because the particles are virtual, but also because dif- 
ferent SUSY particles are likely to have different 
masses. To model the actual behavior we have 
smeared this change over 1-3 orders of magnitude 
symmetrically around Msusv by taking the average of 
the SM and SUSY slopes in this interval. This smear- 
ing lowers the fitted value of Msusv and has little in- 
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Fig. 3. The Msus¥ (a) and Mou T (b) energy scales are shown as 
function o f ~  3 (Mz). The uncertainties in MOUT and Msusv from 
the errors in cq(Mz)  and c%(Mz) are small. The full line as- 
sumes that all SUSY particles have the mass of  the SUSY scale. 
The dashed, dotted and dash-dotted lines indicate the results if 
the SUSY particle spectrum is smeared over the range indicated 
in the figure. 

fluence on M~vT, as shown by the dashed and dotted 
lines in figs. 3a and 3b. 

The values of MGVT and MsvsY are correlated. By 
taking this correlation into account, one finds 

M s l J s y  = 10 3"0+10 GeV , (28) 

~ifGU T = 1016"0+03 GeV, (29) 

o~6~j T =25.7_+ 1.7. (30) 

Because of the threshold behaviour, the mass of the 
heavy gauge bosons (Mx) is typically 0.3 MGUT [25 ]. 
If the proton decay is dominated by X-boson ex- 
change, the proton lifetime for Mx = 3 ! i 0 ~ 5 GeV can 
be estimated as 

1 M 4 1033.2+ 1.2 yr,  (31) 
Z'P r ° t ° n  ~ c~tjv2 M~ - 

where Mp is the proton mass. However, the estimate 
of eq. (31) is not unique because in many SUSY 
models faster decay processes can contribute [29 ]. 
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Fig. 1. (a) First order evolution of the three coupling constants 
in the minimal standard model (world average values in 1987 
from ref, [ 11 ). The small figure is a blow-up of the crossing area). 
(b) As above but using Mz and oq (Mz) from DELPH 1 data. The 
three coupling constants disagree with a single unification point 
by more than 7 standard deviations. 

unif ied theories,  was only two s tandard  devia t ions  in 
1987. 

In this paper  we extend that  analysis with recent 
more precise LEP data. We do this along lines s imilar  
to the ones recently adopted  by Ellis et al. [2 ] and 
Langacker [3] .  We use publ ished da ta  from the 
D E L P H I  Col laborat ion,  of  which we are members ,  
but  s imilar  results could be der ived from the data  of  
o ther  LEP experiments .  

The paper  has been organized as follows: In sec- 
t ions 2 and 3 the coupling constants  are def ined and 
their  new de te rmina t ions  are described.  In section 4 
the evolut ions of  the coupling constants  to high ener- 
gies in the min imal  s tandard  model  (SM)  and in the 
min imal  supersymmetr ic  s tandard  model  (SUSY)  
are compared.  A summary  is given in section 5. 

2. Definition of the coupling constants 

In the unif ied SU (2 )L@U(  1 ) theory,  the follow- 
ing well known relat ions hold between the coupling 
constants  and the gauge boson masses: 

e = v / 4 n a = g s i n  0w = g '  cos 0w, (1)  

M w  = ~vg" , (2) 

Mz = ~ v ~  2 +g2,  (3) 

f rom which it follows that 

e2 g,2 1 M2w (4)  
s in20w- g2 - g,2 + g2 - M 2 • 

Here g and g' are the coupling constants of  the groups 
SU(2)L  and U(  1 ), respectively, c~ is the fine struc- 
ture constant ,  0,~ is the electroweak mixing angle and 
v is the vacuum expectat ion value o f  the Higgs field. 
I f  the model  contains Higgs representations other than 
doublets,  the theory has an addi t ional  degree of  free- 
dom,  usually paramet r ized  by the p-parameter .  

In the SM based on the group SU ( 3 ) c ® S U  (2)  L® 
U ( 1 ) the usual defini t ions of  the coupling constants 
are  

5 ' /2 /4~- -  50~/3C0S20M~ , ( 5 ) 

OL2 = g 2 / 4 n  = a/s in~-O~s , ( 6 )  

a 3 = g 2 / 4 g ,  (7)  

where gs is the SU ( 3 )c coupling constant,  The factor 
5 5 in the defini t ion of  a~ has been included for the 
proper  normal iza t ion  at the unif icat ion point  [4 ]. 

The coupling constants,  if  def ined as effective val- 
ues including loop correct ions in the gauge boson 
propagators ,  become energy dependent  (" run-  
n ing") .  A running coupling constant  requires the 
specification of  a renormal iza t ion scheme (RS) .  We 
will use the usual modif ied  min imal  subtract ion 
scheme (MS)  [5] .  The energy dependence  is com- 
pletely de te rmined  by the particle content  and their  
couplings inside the loop diagrams of  the gauge bo- 
sons, as expressed by the renormal iza t ion  group 
equations,  The first order  renormal iza t ion  group 
equations are 

0 ~t ~ -  cq (# )  = bic~2(#) + .... i = 1 , 2 , 3 ,  (8)  
ogt 

where ~t is the energy at which the couplings are eval- 
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SM SUSY
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K-K, Bd-Bd, Bs-Bs mixing
 
ΔF=1 decays            

SUSY flavour - observables
S. Jäger: Supersymmetry beyond minimal flavour violation 11
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Fig. 3. Diagrams for meson-antimeson mixing. A, B, C, D denote chiralities of the quarks (and squarks). The blobs are flavour-
changing “mass insertions”.

There are also chargino-up-squark contributions. These
can be competitive with the gluino-squark contributions
if the charginos are lighter than the gluinos, as tends to
be the case in GUT scenarios. There are always “mini-
mally flavour-violating” contributions, which are propor-
tional to the same CKM factors as the SM contributions.
Of interest here are the additional contributions due to
nonvanishing δu parameters. Neglecting terms suppressed
by small CKM elements or small Yukawa couplings, only
C1 receives a contribution [58]

C1 = −
GF α√

2π sin2 θW

M2
W

m2
q̃

×
1

20

[

([δũ
ij)LL]2 −

2

3
(δũ

ij)LL(δũ
it)LR(δũ

jt)
∗
LR

+
1

7
[(δũ

it)LR(δũ
jt)

∗
LR]2

]

. (65)

Note that the chargino contributions involve either a LL
mass insertion or a double LR one on each squark line;
for the latter, only those involving a stop can be relevant
according to Table 3. (For B − B̄ mixing, there may be
additional operators [59].)

If tanβ is large, there are in principle also terms pro-
portional to yb that could be important. In that case, how-
ever, Higgs double-penguin diagrams are often dominant
and require a modified treatment [60,61,62,63].

3.2.1 K − K̄ mixing and constraints on δ’s

K − K̄ oscillations proved their discovery potential in
estimating the charm quark mass before its observation
[64], as well as in the discovery of (indirect) CP violation

[65], later giving information on the CP-violating phase in
the CKM matrix. The possibility of large SUSY contribu-
tion was recognized early on [66,67,68,69,70], and ∆MK

and εK still provide the strongest FCNC constraints on
the MSSM parameters. The mass difference ∆MK and
the CP-violating parameter εK follow from the effective
∆F = 2 Hamiltonian,

∆MK ∝ 2
∑

i

Bi Re Ci, (66)

εK ∝
eiπ/4

√
2∆MK

∑

i

Bi Im Ci, (67)

where Bi ≡ 〈K|Qi|K̄〉. The hadronic matrix elements Bi

contain low-energy QCD effects and require nonperturba-
tive methods such as (numerical) lattice QCD, see e.g. [71,
72,73].8 Moreover, ∆MK is afflicted by long-distance con-
tributions which are believed to be not much larger than
the SM short-distance contribution but are difficult to es-
timate. Nevertheless, in view of the strong CKM suppres-
sion of the SM contribution, even a rough estimate of the
Bi translates into strong constraints on s → d flavour vi-
olation parameters. The procedure is as follows [1]:

– Write out the expression for the observable (here, εK

or ∆MK) as linear combination of (products of) δ-
parameters, inserting estimates of the hadronic matrix
elements.

– Require that each term at most saturates the experi-
mental result.

8 Usually, the hadronic matrix elements are normalized to
their values obtained from PCAC in ”vacuum-insertion ap-
proximation”. This normalization is included in the Bi here.
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SUSY flavour puzzle
d                                                      where are their effects?

 o

- elusiveness of deviations from SM in flavour physics
  seems to make MSSM look unnatural

- pragmatic point of view: flavour physics highly sensitive to MSSM 
  parameters - probes the SUSY breaking mechanism in particular

(

δ
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ij

)

AB
≡

(

M2
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)AB

ij
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[Gabbiani et al 96; Misiak et al 97 ]
these numbers from [SJ, 0808.2044]



CMSSM / mSUGRA
• standard approach: “CMSSM” (“mSUGRA”)

- universal scalar mass, gaugino mass, A-terms (Aij=a Yij) 
  at the GUT scale, sign(µ)
- 3 parameters & 1 sign, RG evolution down to TeV scale

• flavour puzzle absent [CMSSM still needs to be justified]

• Straightforward interpretation of experimental constraints

ATLAS-CONF-2011-064
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Figure 2: Expected and observed limits of the combined 0-and 1-lepton channels derived with the power
constrained limit (PCL) and the CLs method. The red dashed line corresponds to the expected median
PCL at 95% C.L., and the red solid line to the observed PCL at 95% C.L. The green dotted line cor-
responds to the expected median exclusion contour at 95% C.L. derived with the CLs method, and the
green dashed-dotted line corresponds to the observed exclusion contour at 95% C.L. derived with the
CLs method. Tevatron and LEP limits on mq̃ and mg̃ are marked for searches in the specific context of
MSUGRA/CMSSM, with tan β = 3, A0 = 0 and µ > 0, and are also shown for illustration.

[4] G. L. Kane et al., Phys. Rev. D49 (1994) 6173.

[5] ATLAS Collaboration, CERN-OPEN-2008-020 (2008) 1480.

[6] A. Read, Journal of Physics G: Nucl. Part. Phys. 28 (2002) 2693-2704.
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Grand unification
• SM fields

• SM in highly reducible representations of the gauge group
   SM gen = (3,2)1/6 + (3,1)-2/3 + (3,1)1/3 + (1,2)-1/2 + (1,1)1

• however,
   SM gen              = [10 + 5]SU(5)
   SM gen + νRc     = 16SO(10)

• if either group is gauged, no gauge invariant distinction of 
baryons and leptons - baryon & lepton number violation

what about flavour?

The standard model
A relativistic quantum theory of twelve flavors of spin-1/2 

fermion, each with different mass

Quarks feel the strong interactions. They and the charged 

leptons also interact with the electromagnetic field.

Weak interactions are chiral

Standard Model

All matter is composed of twelve “flavors” of spin-1/2 fermion,

including three neutrinos, each with different mass.
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Flavour of SUSY GUTs
• small, hierarchical mixing in the quark sector

• large mixings in the lepton sector

Mixing matrices

Flavor mixing in the charged current occurs both in the
quark and in the lepton sector.
In the quark sector, mixing is small . . .

. . . but in the lepton sector, it is large:

, ( CL)
Hadronic and leptonic flavor violation in a SUSY GUT – p.5/35

Mixing matrices

Flavor mixing in the charged current occurs both in the
quark and in the lepton sector.
In the quark sector, mixing is small . . .

. . . but in the lepton sector, it is large:

, ( CL)
Hadronic and leptonic flavor violation in a SUSY GUT – p.5/35

SUSY radiative corrections can “transfer” leptonic 
mixing angles to the hadronic sector
                  Barbieri&Hall 1994, Barbieri,Hall,Strumia 1995

Mixing matrices

Flavor mixing in the charged current occurs both in the
quark and in the lepton sector.
In the quark sector, mixing is small . . .

. . . but in the lepton sector, it is large:

, ( CL)
Hadronic and leptonic flavor violation in a SUSY GUT – p.5/35



CMM Model
• SO(10) gauge theory with superpotential

• assumptions:
- Y1 and YN simultaneously diagonalisable
- breaking via SU(5)

- MSSM Higgs doublets in different copies of 10 of SO(10)
  

Nonrenormalizable Y2 term gives naturally small tan(β)

2 Framework 5

The three generations of standard model matter fields are unified into three spinorial represen-

tations, together with three right-handed neutrinos,

16i = (Q, uc, dc, L, ec, νc)i , i = 1, 2, 3 . (3)

Here Q and L denote the quark and lepton doublet superfields and uc, dc, ec, and νc the corre-

sponding singlet fields of the up and down antiquark as well as the positron and the antineutrino,

respectively.

The Yukawa superpotential reads

WY =
1

2
16i Y

ij
1 16j 10H + 16i Y

ij
2 16j

45H 10′H
2MPl

+ 16i Y
ij
N 16j

16H16H
2MPl

. (4)

Let us discuss the individual terms in detail. The MSSM Higgs doublets Hu and Hd are contained

in 10H and 10′H , respectively. Only the up-type Higgs doublet Hu in 10H , acquires a weak-scale

vev such that the first term gives masses to the up quarks and neutrinos only. The masses for

the down quarks and charged fermions are then generated through the vev of the down-type Higgs

doublet of a second Higgs field Hd in 10′H . (A second Higgs field is generally needed in order to

have a non-trivial CKM matrix.) They are obtained from the second term in Eq. (4) which is of

mass-dimension five. In fact, this operator stands for various, nonequivalent effective operators with

both the SU(5)-singlet and the SU(5)-adjoint vevs of the adjoint Higgs field such that the coupling

matrix Y2 can only be understood symbolically. The operator can be constructed in various ways,

for example by integrating out SO(10) fields at the Planck scale. The corresponding couplings can

be symmetric or antisymmetric [35, 36], resulting in an asymmetric effective coupling matrix Y2,

as opposed to the symmetric matrices Y1 and YN . This asymmetric matrix allows for significantly

different rotation matrices for the left and right-handed fields. For more details see Appendix A.

The dimension-five coupling also triggers a natural hierarchy between the up and down-type quarks,

corresponding to small values of tanβ, where tanβ is the ratio of the vacuum expectation values

(vevs), tanβ = 〈Hu〉 / 〈Hd〉. Finally, the third term in Eq. (4), again a higher-dimensional operator,

generates Majorana masses for the right-handed neutrinos.

The Yukawa matrices are diagonalized as

Y1 = L1D1 L
"
1 ,

Y2 = L2D2R
†
2 ,

YN = RN DN PN R"
N ,

(5)

where Li and Ri are unitary matrices, PN is a phase matrix, and D1,2,N are diagonal with positive

entries. In order to work out the physically observable mixing parameters, we choose the first
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3A complete model requires a suitable Higgs superpotential, both to achieve the pattern of VEVs assumed here

and to give GUT-scale masses to all components in 10H , 10′H , 45H but for the two MSSM doublets (see below). The

Higgs potential was not specified in [12], and we do not address this problem here. Rather, our focus in this paper is

on the consequences of the breaking pattern and flavour structure on low-energy phenomenology. We feel our findings,

in turn, motivate further work on the symmetry breaking dynamics, possibly along the lines of [34], who discuss a

somewhat similar Higgs sector.

Symmetry breaking

Two steps:
1. : , get VEVs
2. MSSM (e.g. via )
Multiplets decompose as follows:

MSSM Higgs doublets , lie in and without
mixing: important in interpreting the superpotential!
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Flavour structure

• Now fix a U-basis where Y1 and YN. Then

contains all flavour violation
In the SM, UD is unphysical in hadronic physics.
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describe the quark mixing. We will work in the SU(5) basis, in which the Yukawa couplings read

WY =

[
1

4
Ψ!

D1Ψ+N!
D1Φ

]
H +

√
2Ψ!L†

1L2D
′
2R

†
2L

∗
1ΦH ′

+
MN

2
N!L†

1RNDNPNR!
NL∗

1N , (7)

D
′
2 = D2

v0
MPl

, MN =

〈
16H

〉 〈
16H

〉

MPl

Here, we denote the SU(5) matter fields by Ψi = (Qi, uci , e
c
i ), Φi = (dci , Li) and Ni = νci and the

SU(5) Higgs fields by H = (Hu, ∗) and H ′ = (∗, Hd). The color-triplets in H and H ′ which acquire

masses of order MGUT are denoted by ∗. The vev v0 is defined after Eq. (2). Now we identify the

quark mixing matrix as

Vq = L!
1 L

∗
2 . (8)

(Vq coincides with the SM quark mixing matrix VCKM up to phases.) We can always choose a basis

where one of the three Yukawa matrices is diagonal. In the CMM model, however, one assumes

that Y1 and YN are simultaneously diagonalizable, i.e.

L†
1RN = . (9)

This assumption is motivated by the observed values for the fermion masses and mixings and

might be a result of family symmetries. First, we note that the up-quarks are more strongly

hierarchical than the down quarks, charged leptons, and neutrinos. As a result, the eigenvalues

of YN must almost have a double hierarchy, compared to Y1. Then, given the Yukawa couplings

in an arbitrary basis, we expect smaller off-diagonal entries in L1 than in L2 because hierarchical

masses generically correspond to small mixing. Moreover, the light neutrino mass matrix implies

that, barring cancellations, the rotations in L1 should rather be smaller than those in VCKM [37].

Hence, even if the relation (9) does not hold exactly, the off-diagonal entries in L†
1RN will be much

smaller than the entries in VCKM and they cannot spoil the large effects generated by the lepton

mixing matrix, UPMNS.

Our assumption that Y1 and YN are simultaneously diagonalizable permits an arbitrary phase

matrix on the right-hand side of Eq. (9). However, this phase matrix can be absorbed into PN

introduced earlier in Eq. (5) (where this matrix could have been absorbed into RN ). Now, with Y1

and YN being simultaneously diagonal, the flavor structure is (apart from supersymmetry breaking

terms, which we will discuss below) fully contained in the remaining coupling, Y2, and Eq. (6)

simply reads

WY =
1

2
16!D116 10H + 16!V ∗

q D2R
†
2L

∗
1 16

45H 10′H
2MPl

+ 16!DNPN 16
16H16H
2MPl

. (10)

It is clear that this coupling has to account for both the quark and lepton mixing. Hence, Y2 cannot

be symmetric.

As mentioned above, the higher-dimensional operator can be generated in various ways, gener-

ically resulting in the asymmetric effective coupling matrix Y2. The dominant contributions come
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from the singlet vev, v0 ∼ MSO(10), which is an order of magnitude higher than σ ∼ MGUT. In this

case, the contributions are approximately the same for down quarks and charged leptons; a more

detailed discussion is given in Appendix A. Then we can identify the lepton mixing matrix as

UD = P ∗
NR†

2L
∗
1 . (11)

Again, UD coincides with the lepton mixing matrix U∗
PMNS up to phases. In this paper, the Majorana

phases contained in PN are irrelevant and can therefore be neglected. We can then express the

Yukawa coupling of the down quarks and charged leptons as

Y2 = V ∗
q D2 UD . (12)

The relation (12) holds in the CMM model as long as we concentrate on the heaviest generation,

namely the bottom quarks and the tau lepton. The masses of the lighter generations do not unify, so

the higher-dimensional operators must partially contribute differently to down quarks and charged

leptons (see Appendix A). Now one might wonder whether these corrections significantly modify the

relation (12); however, the approximate bottom-tau unification and the good agreement between

the SM predictions and the experimental data for Bd−Bd mixing, ∆MK and εK severely constrain

these potential modification, as discussed in Ref. [38]. A corresponding analysis in the lepton sector

(in a wider SU(5) framework) exploiting µ → eγ can be found in Ref. [39]. We can therefore safely

neglect corrections to Eq. (12).

In terms of MSSM fields, the couplings simply read

WY = QiD
ij
1 ucj Hu +Qi

(
V ∗
q D

′
2 UD

)ij
dcj Hd

+ LiD
ij
1 νcj Hu + Li

(
U#
D D

′
2 V

†
q

)ij
ecj Hd +

1

2
νci D

ij
N νcj . (13)

Here QiD
ij
1 ucj Hu is short-hand for εmnQαm

i D
ij
1 ucαj H

n
u with the SU(3)C and SU(2)L indices α =

1, 2, 3 and m,n = 1, 2, respectively, and similarly for the other couplings. Eq. (13) holds for exact

SO(10) symmetry; below MSO(10) the Yukawa couplings Dij
1 in the first and third terms will be

different, as well as those in the second and fourth term.

Both Vq and UD are unitary matrices, which generically have nine parameters each, namely

three mixing angles and six phases. In the SM, we can eliminate five of the six phases in VCKM

by making phase rotations of the quark fields. Due to the Majorana nature of the neutrinos, we

are left with three phases in UPMNS. In the CMM model, however, we cannot rotate the quark

and lepton fields separately without violating the implicit GUT constraint. Once we eliminate all

but one phase in Vq, we are left with the full set of phases in UD. To see the additional phases

explicitly, let us write down the mixing matrix for the tri-bimaximal solution, corresponding to

θ12 = arcsin
(
1/
√
3
)
% 35◦, θ13 = 0◦, and θ23 = 45◦,

UTBM
D = ΘLU

TMB∗
PMNSΘR =





√
2
3 e

−ia1 1√
3
e−ia2 0

− 1√
6
e−ia4 1√

3
e−i(−a1+a2+a4) 1√

2
e−i(−a1+a3+a4)

1√
6
e−ia5 − 1√

3
e−i(−a1+a2+a5) 1√

2
e−i(−a1+a3+a5).



 . (14)

CKM quark mixing matrix

PMNS lepton mixing matrix
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MD, ML



Flavour structure (2)
• work in the (U) basis

MD = vd Y2
   rotating to mass eigenstates eliminates UD

ML  = vd Y2T

     rotating to mass eigenstates eliminates Vq

so no physical effect in the SM, or unbroken SUSY theory
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Yukawa coupling of the down quarks and charged leptons as

Y2 = V ∗
q D2 UD . (12)

The relation (12) holds in the CMM model as long as we concentrate on the heaviest generation,

namely the bottom quarks and the tau lepton. The masses of the lighter generations do not unify, so

the higher-dimensional operators must partially contribute differently to down quarks and charged

leptons (see Appendix A). Now one might wonder whether these corrections significantly modify the

relation (12); however, the approximate bottom-tau unification and the good agreement between

the SM predictions and the experimental data for Bd−Bd mixing, ∆MK and εK severely constrain

these potential modification, as discussed in Ref. [38]. A corresponding analysis in the lepton sector

(in a wider SU(5) framework) exploiting µ → eγ can be found in Ref. [39]. We can therefore safely

neglect corrections to Eq. (12).

In terms of MSSM fields, the couplings simply read

WY = QiD
ij
1 ucj Hu +Qi

(
V ∗
q D

′
2 UD

)ij
dcj Hd

+ LiD
ij
1 νcj Hu + Li

(
U#
D D

′
2 V

†
q

)ij
ecj Hd +

1

2
νci D

ij
N νcj . (13)

Here QiD
ij
1 ucj Hu is short-hand for εmnQαm

i D
ij
1 ucαj H

n
u with the SU(3)C and SU(2)L indices α =

1, 2, 3 and m,n = 1, 2, respectively, and similarly for the other couplings. Eq. (13) holds for exact

SO(10) symmetry; below MSO(10) the Yukawa couplings Dij
1 in the first and third terms will be

different, as well as those in the second and fourth term.

Both Vq and UD are unitary matrices, which generically have nine parameters each, namely

three mixing angles and six phases. In the SM, we can eliminate five of the six phases in VCKM

by making phase rotations of the quark fields. Due to the Majorana nature of the neutrinos, we

are left with three phases in UPMNS. In the CMM model, however, we cannot rotate the quark

and lepton fields separately without violating the implicit GUT constraint. Once we eliminate all

but one phase in Vq, we are left with the full set of phases in UD. To see the additional phases

explicitly, let us write down the mixing matrix for the tri-bimaximal solution, corresponding to

θ12 = arcsin
(
1/
√
3
)
% 35◦, θ13 = 0◦, and θ23 = 45◦,

UTBM
D = ΘLU

TMB∗
PMNSΘR =





√
2
3 e

−ia1 1√
3
e−ia2 0

− 1√
6
e−ia4 1√

3
e−i(−a1+a2+a4) 1√

2
e−i(−a1+a3+a4)

1√
6
e−ia5 − 1√

3
e−i(−a1+a2+a5) 1√

2
e−i(−a1+a3+a5).



 . (14)
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Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in 〈H〉 =

√
−m2

H/2λ. Since we

know experimentally that 〈H〉 is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2

UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The
largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS

16π2

[
Λ2

UV − 2m2
S ln(ΛUV/mS) + . . .

]
. (1.3)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.
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One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
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but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
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not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
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†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.
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The sixth phase (the ‘standard’ phase δ) drops out due to θ13 = 0◦. In Eq. (14), we choose a

parametrization, where the phases could be absorbed via the phase matrices

ΘL = diag(e−ia1 , e−ia4 , e−ia5), ΘR = diag(1, ei(a1−a2), ei(a1−a3)), UD = ΘLU
∗
PMNSΘR. (15)

acting on the fields on the left and right, respectively. However, we only have this freedom for

either Vq or UD. We choose Vq ≡ VCKM to be in its standard parametrization, so UD will have the

structure indicated in Eq. (14). These phases are important constituents of our observables (see

Section 4). If we restrict to transitions between the second and third generation as in Bs−Bsmixing

then only one phase (difference) enters the observables. Then we can write4

UD = diag(1, eiξ, 1)U∗
PMNS, ξ = a5 − a4. (16)

Let us now add the supersymmetry breaking terms,

Lsoft = −1̃6
∗
i m

2 ij

1̃6
1̃6j −m2

10H 10∗H10H −m2
10′H

10∗H′10H′

−m2
16H

16∗H16H −m2
16H16

∗
H16H −m2

45H 45∗H45H

−
(
1

2
1̃6i A

ij
1 1̃6j 10H + 1̃6i A

ij
2 1̃6j

45H 10H′

2MPl
+ 1̃6i A

ij
N 1̃6j

16H16H
2MPl

+ h.c.

)
, (17)

where m are the soft scalar mass matrices and Ai the (dimensionful) coefficients of the scalar trilinear

couplings. In addition, there are B-terms for the Higgs fields as well as gaugino mass terms. As

discussed above, we assume universal parameters at MPl,

m
2
1̃6i

= m2
0 , m2

10H = m2
10′H

= m2
16H = m2

16H
= m2

45H = m2
0 , (18a)

A1 = a0 Y1 , A2 = a0 Y2 , AN = a0 YN , (18b)

as well as one universal gaugino mass, mg̃. Thus at MPl, the soft masses are diagonal in any flavor

basis. At lower energies, this universality is broken. In particular, it is broken at MGUT, which

leads to a different phenomenology than the CMSSM [16] or mSUGRA [17]. The renormalization

group evolution is conveniently performed in a flavor basis in which the up-type Yukawa couplings

are diagonal (up basis).

For completeness we also give the soft breaking terms for the CMM model in terms of SU(5)

fields:

Lsoft = −Ψ̃∗
i m

2 ij

Ψ̃
Ψ̃j − Φ̃∗

i m
2 ij

Φ̃
Φ̃j −

[
1

2
Ñim

2 ij

Ñ
Ñj + h.c.

]

−m2
H H∗H −m2

H′ H ′∗H ′ −m2
24H 24∗H24H

−
[(

1

4
Ψ̃%

A1 Ψ̃+ Ñ%
AνΦ̃

)
H +

√
2Ψ̃%

A2 Φ̃H ′ +
MN

2
Ñ%

AN Ñ + h.c.

]
. (19)

The fields Ψi, Φi, Ni, H and H ′ live in the representations 10, 5, 1, 5 and 5 of SU(5), respectively.

4The corrections to the diagonalization matrix of the right-handed down quarks, UD, are studied in [38].

[Hall, Kostelecky, Raby 86;  Barbieri, Hall, Strumia 95]
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For completeness we also give the soft breaking terms for the CMM model in terms of SU(5)
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Lsoft = −Ψ̃∗
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H +
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The fields Ψi, Φi, Ni, H and H ′ live in the representations 10, 5, 1, 5 and 5 of SU(5), respectively.

4The corrections to the diagonalization matrix of the right-handed down quarks, UD, are studied in [38].

Assume that SUSY breaking is flavour blind and universal (like 
msugra) at or near the Planck scale

radiative corrections lead to a nonuniversal sfermion mass matrix 
at the GUT scale, diagonal in the U-basis



Observables
• There is now a mismatch of the sfermion and fermion mass 

bases for the right-handed down-type particles and the left-
handed leptons

• Diagonalizing the matrix introduces flavour violation into 
neutral current vertices

2 Framework 9

d̃iα

djβ

g̃a

i
√
2T a

αβ(UD)jiPR

(a)

d̃iα

djβ

χ̃0
k

i
(
Y D
j (UD)jiZ

3k
N PL −

√
2e

3 cos θW
(UD)jiZ

1k∗
N PR

)
δαβ for i #= j

(b)

Figure 1: Quark-squark-gluino and quark-squark-neutralino vertices for i, j = 2, 3. Here djβ is the

Dirac field of the down-quark mass eigenstate of the j-th generation. d̃iα is the i-th-generation

right-handed down-squark mass eigenstate (coinciding with the interaction eigenstate in the basis

with Y1 = D1).

In leading order, the soft mass matrix for the right-handed down squarks, m2
d̃
, keeps its diagonal

form but the third generation gets significant corrections from the large top Yukawa coupling, which

are parametrized by the real parameter ∆d̃,

m
2
d̃
(MZ) = diag

(
m2

d̃
, m2

d̃
, m2

d̃
−∆d̃

)
. (20)

Here and in the following, the small Yukawa couplings of the first two generations are set to zero in

the renormalization group equations. Now choosing the super-CKM basis5 where the down quarks

are mass eigenstates, this matrix is no longer diagonal,

m
2
D = UDm

2
d̃
U †
D =




m2

d̃
0 0

0 m2
d̃
− 1

2∆d̃ −1
2∆d̃e

iξ

0 −1
2∆d̃e

−iξ m2
d̃
− 1

2∆d̃



 , ξ ≡ a5 − a4, (21)

allowing flavor-changing quark-squark-gluino and quark-squark-neutralino vertices (Fig. 1). Simi-

larly, we get for the sleptons m2
L = UDm

2
l̃
U †
D. The CP phase6 ξ is of utmost importance for the

phenomenology of b → s transitions. It is worthwhile to compare the situation at hand with the

usual MSSM with generic flavor structure: In the latter model all off-diagonal elements of the

squark mass matrices are ad-hoc complex parameters, constrained only by the hermiticity of the

squark mass matrices. In the CMM model, the phase factor eiξ originates from the Yukawa matrix

Y2 in Eq. (12) and enters Eq. (21) through a rotation of right-handed superfields.

Similarly, relation (18b) holds at the Planck scale. Running the MSSM trilinear terms Ad and

Ae down to the electroweak scale, off-diagonal entries appear in the super-CKM basis due to the

large mixing matrix UD. These entries yield additional flavor violating effects. The running of the

parameters in the various regions will be discussed in the following section. In our notation, we

denote trilinear breaking terms that are defined in the super-CKM basis by a hat (e.g. Âd).

Let us finally discuss two important aspects of the analysis which originate from the model’s

group structure. One, when the SU(5) singlet component of the spinorial Higgs field, 16H , acquires

5For the soft-terms and rotation matrices we will always use the convention of [40]
6In [38] the phase ξ corresponds to φBs

in absence of Yukawa corrections to the first two generations. Note

that in [38] a different convention for the soft terms of d̃c, ũc, ẽc is used: d̃cm2

d̃
d̃c

∗
and not d̃c

∗
m

2

d̃
d̃c such that

m
2

d̃
=

(
m

2

d̃

)∗
[38].

complex 
phase



Soft flavour violation
Vertices in the CMM model

l−i ν̃Lj

χ̃−
k

−i
(

e
sin θW

Z1i
+ PL + yl−i

Z2i
−

∗
PR

)

Uij

l−i l̃−Lj

χ̃0
k

i

(

[

e√
2cos θW

Z1k
N + e√

2sin θW
Z2k

N

]

PL+ yl−i
Z3k

N
∗
PR

)

Uij

dib d̃Rjc

g̃A
3

i
√

2g3T A
cb PR Uij

UD = U physical in sfermion sector. Expect contributions to FCNC pro-
cesses at one loop.

Hadronic versus leptonic flavor and CP violation in SUSY SO(10) – p.7/14

may be 
complex

large effects in b ➔s transitions, CP violation
correlations of hadronic & leptonic observables

2 ➔1 and 3 ➔1 transitions less clearly correlated
                               but see Trine et al 2009, Girrbach et al 2010



Earlier work
• Ours is not the first flavour analysis of SUSY GUTs, earlier 

related work includes:

Barbieri et al 1995
    SO(10) model with small leptonic mixing

Moroi JHEP 0003 (2000) 019, PLB 493 (2000) 366
    SUSY SU(5) model with right-handed neutrinos,
    radiative effects due to atmospheric mixing angle

Harnik et al 2003
    analysis of effective model with large sbottom-sstrange
    mixing, inspired by the CMM model

Ciuchini et al 2004,2007
    SUSY breaking parameterised in mass insertion
    approximation, SU(5) GUT relations imposed at MGUT

Analysis strategy here resembles Barbieri et al 1995
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RG evolution
• 2-loop RGE for gauge couplings and yt, analytic formulas 

for soft terms, matched at SUSY, SU(5) and SO(10) 
thresholds

• relate Planck-scale inputs to set of low-energy inputs:

at MZ

evolve to MGUT

evolve to M10

evolve to MPl

evolve all soft terms down to MZ, calculate spectrum & 
observables

16

3.4 Supersymmetry Breaking Parameters

The soft masses and A-terms at the scaleMZ are fixed by the universal terms a0, m2
0, andD through

the renormalization group equations (RGE). Instead of guessing their values atMPl, we will consider

three parameters at MZ which are allowed by theoretical and experimental constraints. These are

the soft masses of the first generation of right-handed up and down squarks and the (11)-element

of the trilinear coupling of the down squarks,

m2
ũ1
(MZ) , m2

d̃1
(MZ) , ad1(MZ) ≡

[
ad(MZ)

]

11
. (48)

We work in the weak basis with diagonal Y1 and the trilinear term ad1 is defined with the correspond-

ing Yukawa coupling factored out, in analogy to a0 in Eq. (18b). With these initial conditions we

can evolve the soft terms up to MGUT, where the MSSM fields are unified into the SU(5) multiplets

Φ and Ψ with

m2
Ψ̃1

(tGUT) = m2
ũ1

(tGUT) , m2
Φ̃1

(tGUT) = m2
d̃1
(tGUT) . (49)

After running from MGUT to MSO(10) we can calculate D by means of Eqs. (22),

D =
1

4

[
m2

Ψ̃1

(
tSO(10)

)
−m2

Φ̃1

(
tSO(10)

)]
, (50)

and determine

m2
1̃61

(
tSO(10)

)
=

1

4

[
3m2

Ψ̃1

(
tSO(10)

)
+m2

Φ̃1

(
tSO(10)

)]
. (51)

Then the universal scalar soft mass at the Planck scale is found:

m2
0 = m2

1̃61
(tPl) (52)

The determination of the universal gaugino mass mg̃ is much simpler: At leading order the ratio

κ ≡ mg̃i(t)/α̃i(t) is RG invariant, independent of i and equal to its SU(5) and SO(10) GUT values,

κ = mg̃(t)/α̃(t) [47]. We determine κ from the gluino mass and the QCD coupling:

mg̃i(t) = κ α̃i(t) , (53)

where

κ ≡
mg̃3(MZ)

α̃3(MZ)
. (54)

The RGE needed to determine the Planck scale parameters are

MSSM:
d

dt
ad1 = −

(
32

3
α̃2
3 + 6α̃2

2 +
14

15
α̃2
1

)
κ

SU(5):
d

dt
ad1 = −

168

5
α̃2κ

SO(10):
d

dt
ad1 = −95α̃2κ ⇒ a0 = aD1 (tPlanck) (55)
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ũ1
(MZ) , m2

d̃1
(MZ) , ad1(MZ) ≡

[
ad(MZ)

]

11
. (48)

We work in the weak basis with diagonal Y1 and the trilinear term ad1 is defined with the correspond-

ing Yukawa coupling factored out, in analogy to a0 in Eq. (18b). With these initial conditions we

can evolve the soft terms up to MGUT, where the MSSM fields are unified into the SU(5) multiplets

Φ and Ψ with

m2
Ψ̃1

(tGUT) = m2
ũ1

(tGUT) , m2
Φ̃1

(tGUT) = m2
d̃1
(tGUT) . (49)

After running from MGUT to MSO(10) we can calculate D by means of Eqs. (22),

D =
1

4

[
m2

Ψ̃1

(
tSO(10)

)
−m2

Φ̃1

(
tSO(10)

)]
, (50)

and determine

m2
1̃61

(
tSO(10)

)
=

1

4

[
3m2

Ψ̃1

(
tSO(10)

)
+m2

Φ̃1

(
tSO(10)

)]
. (51)

Then the universal scalar soft mass at the Planck scale is found:

m2
0 = m2

1̃61
(tPl) (52)

The determination of the universal gaugino mass mg̃ is much simpler: At leading order the ratio

κ ≡ mg̃i(t)/α̃i(t) is RG invariant, independent of i and equal to its SU(5) and SO(10) GUT values,

κ = mg̃(t)/α̃(t) [47]. We determine κ from the gluino mass and the QCD coupling:

mg̃i(t) = κ α̃i(t) , (53)

where

κ ≡
mg̃3(MZ)

α̃3(MZ)
. (54)

The RGE needed to determine the Planck scale parameters are

MSSM:
d

dt
ad1 = −

(
32

3
α̃2
3 + 6α̃2

2 +
14

15
α̃2
1

)
κ

SU(5):
d

dt
ad1 = −

168

5
α̃2κ

SO(10):
d

dt
ad1 = −95α̃2κ ⇒ a0 = aD1 (tPlanck) (55)
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similarly for a1d
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d

dt
m2

d̃1
= −

32

3
κ2α̃3

3 −
8

15
κ2α̃3

1 +
2

5

SGUT

α̃GUT
α̃2
1

+4|ỹb|2|(UD)31|2
[
m2

d̃1
+m2

q̃3 +m2
Hd

]
+ 4(U †

D
ˆ̃
A
†
d
ˆ̃
AdUD)11 ,

d

dt
m2

d̃3
= −

32

3
κ2α̃3

3 −
8

15
κ2α̃3

1 +
2

5

SGUT

α̃GUT
α̃2
1

+4|ỹb|2|(UD)33|2
[
m2

d̃3
+m2

q̃3 +m2
Hd

]
+ 4(U †

D
ˆ̃
A
†
d
ˆ̃
AdUD)33 ,

d

dt
m2

l̃1
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 −
3

5

SGUT

α̃GUT
α̃2
1

+2|ỹτ |2|U31|2
[
m2

l̃1
+m2

Hd
+m2

l̃3

]
+ 2(U † ˆ̃

Ae
ˆ̃
A
†
eU)11 ,

d

dt
m2

l̃3
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 −
3

5

SGUT

α̃GUT
α̃2
1

2|ỹτ |2|U33|2
[
2m2

l̃3
+m2

Hd

]
+ 2(U † ˆ̃

Ae
ˆ̃
A
†
eU)33 ,

d

dt
m2

ẽ1 = −
24

5
κ2α̃3

1 +
6

5

SGUT

α̃GUT
α̃2
1 ,

d

dt
m2

ẽ3 = −
24

5
κ2α̃3

1 +
6

5

SGUT

α̃GUT
α̃2
1

+4|ỹτ |2
[
m2

ẽ3 +m2
Hd

+ (Um2
l̃
U †)33

]
+ 4(|(ˆ̃Ae)23|2 + |Ãτ |2) ,

d

dt
m2

Hu
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 +
3

5

SGUT

α̃GUT
α̃2
1

+6|ỹt|2
[
m2

Hu
+m2

q̃3 +m2
ũ3

]
+ 6|Ãt|2+ ,

d

dt
m2

Hd
= −6κ2α̃3

2 −
6

5
κ2α̃3

1 −
3

5

SGUT

α̃GUT
α̃2
1

+6|ỹb|2
[
m2

Hd
+m2

q̃3 + (UDm
2
d̃
U †
D)33

]
+ 2|ỹτ |2

[
m2

Hd
+m2

l̃3
+ (Um2

l̃
U †)33

]

+6(|Ãb|2 + |(ˆ̃Ad)32|2) + 2(|Ãτ |2 + |(ˆ̃Ae)23|2) . (66)

3.7 Parameters at MGUT

The philosophy of the CMM model is somewhat different from that of the CMSSM. Although both

need only a few input parameters and are in a sense minimal flavor violating, the CMSSM assumes

flavor universality at the GUT scale with quark and lepton flavor structures being unrelated. By

contrast, the CMM model invokes universality (see Eq. (18)) at a more natural scale, namely MPl.

All flavor violation stems from an non-renormalizable term related to Yd due to the assumption

that the Majorana mass matrix and the up Yukawa coupling are simultaneously diagonalizable.

Furthermore, the CMM model is minimal in the sense that it is only constructed with Higgs

representations that are needed for symmetry breaking anyway.

Contrary to the CMSSM, at the GUT scale universality is already broken in the CMM model

due to the runningMPl → MSO(10) → MGUT. We illustrate the difference with the input parameters

Mq̃ = 1500 GeV, mg̃3 = 500 GeV, ad1(MZ)/Mq̃ = 1.5, arg(µ) = 0 and tanβ = 6. With our running

22

procedure the universal parameters at the Planck scale have the values:

a0 = 1273 GeV, m0 = 1430 GeV, mg̃ = 184 GeV. (67)

Using the super-CKM basis (as denoted by the hat) for the trilinear terms and the up basis for

masses, we already arrive at the following non-universal parameters at the GUT scale:

ˆ̃
Au(MGUT) =




0 0 0

0 0 0

0 0 46



 GeV, ˆ̃
Ad(MGUT) =




0 0 0

0 0 0

0 0.3 −3.5



 GeV, (68a)

ˆ̃
Aν(MGUT) =




0 0 0

0 0 0

−0.0013 0.0023 43.4



 GeV, (68b)

mΦ̃(MGUT) = diag (1426, 1426, 1074) GeV, (68c)

mΨ̃(MGUT) = diag (1444, 1444, 1077) GeV, (68d)

mÑ (MGUT) = diag (1459, 1459, 1078) GeV, (68e)

mHu(MGUT) = 1126 GeV, mHd(MGUT) = 1446 GeV, (68f)

mg̃(MGUT) = 211 GeV. (68g)

With ỹt(MGUT) = 0.046 and ỹb(MGUT) = −0.0026 we can now no longer write A = a0Y, especially

Ad has already developed an off-diagonal entry inducing s̃R → b̃L-transitions. Moreover, the third

generation masses already separate significantly from those of the first two generations at the GUT

scale.

The idea of universal soft breaking terms at MPl and flavor-violation from yt-driven RG running

above MGUT has been studied by many authors, both in SU(5) and SO(10) scenarios [10,12–14,18,

22, 51–54]. A detailed comparison of our results with the literature will be given in Sec. 6.

4 Observables

In this Section, we briefly summarize the observables that are used to constrain the CMM model

parameter space.

4.1 Bs − Bs Mixing

Bs−Bs oscillations are governed by the Schrödinger equation

i
d

dt

(
|Bs(t)〉∣∣B̄s(t)

〉
)

=

(
M

s −
i

2
Γ
s

)(
|Bs(t)〉∣∣B̄s(t)

〉
)

(69)

with the mass matrix Ms and the decay matrix Γs. The physical eigenstates |BH,L〉 with the masses

MH,L and the decay rates ΓH,L are obtained by diagonalizing Ms− iΓs/2. The physical observables
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Figure 3: Relative mass splitting ∆rel
d̃

= 1 −m2
d̃3
/m2

d̃2
among the bilinear soft terms for the right-

handed squarks of the second and third generations with tanβ = 3 (left) and 6 (right) in the

Mq̃(MZ)− ad1(MZ)/Mq̃(MZ) plane for mg̃3 = 500 GeV and sgn(µ) = +1.

Sparticle spectrum and FCNC observables for a specific parameter point

Exemplarily, we present the output for one CMM model parameter point. We choose the same

inputs as in Sec. 3.7 where the parameters at the GUT scale have been discussed:

Mq̃ = 1500 GeV, mg̃3 = 500 GeV, ad1/Mq̃ = 1.5, arg(µ) = 0, tanβ = 6. (130)

The sparticle spectrum at the electroweak scale is given as (mass eigenvalues):

mg̃1 = 83 GeV, mg̃2 = 165 GeV, (131)

mχ̃0
i
= (640, 632, 159, 81) GeV (132)

mχ̃±
i
= (640, 159) GeV (133)

Ml̃i
= (1427, 1427, 1074, 1462, 1462, 1095) GeV (134)

Mũi = (1519, 1519, 934, 1501, 1501, 485) GeV (135)

Md̃i
= (1519, 1519, 908, 1498, 1498, 1164) GeV. (136)

The lightest neutralino is identified as the LSP (underlined number). The first three entries in Mf̃i
,

f̃ = l̃, ũ, d̃ correspond to sfermions with a larger left-handed component and the last three with a

larger right-handed component, where the third generation masses are printed in bold face. The

typical mass splitting is quite evident. The mixing angle between the two stop eigenstates with

485 GeV and 934 GeV is θt̃ = 11◦ and left-right mixing in the down sector is negligible, owing

to the small value of tanβ. While M2
d̃4

= M2
d̃5

= m2
d̃1

= m2
d̃2
, the flavor composition of the two

LSP

MSSM RGE

upward 
evolution



Perturbativity of yt

• yt has quasi-fixed point yt2/g2=55/56 ~1 in SO(10)

• above this ratio, fast running and typically blowup below MPl

• below, perturbative treatment of SO(10) radiative 
corrections possible
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Figure 2: If tanβ is too small, yt becomes non-perturbative below the Planck scale. The dotted

line corresponds to a value of tanβ, where g/yt reaches its fixed point at tSO(10). The kinks in the

functions are due to the change of the gauge group.

3 Renormalization Group Equations

3.1 Top Yukawa Coupling and its Infrared Fixed Point

For small values of tanβ, the top Yukawa yt coupling is of order unity. In this case, the coupling can

become non-perturbative below the Planck scale, in particular in GUT scenarios which generically

include larger representations than the MSSM. The SO(10) RGE for the gauge and top Yukawa

coupling have a infrared fixed point for g2/y2t = 56/55 [44–46]. Thus, for larger values of yt at

MSO(10), its value may become non-perturbative below the Planck scale. In the CMM model the

main driver of the FCNC effects is the RG revolution between MPl and MSO(10). Therefore, with

increasing tanβ the model specific b → s transitions quickly die out.

In the CMM model, the infrared fixed point corresponds to tanβ # 2.5 as one can see in Fig. 2.

Our analysis will be located close to this fixed point. For this reason, the running of the top Yukawa

coupling is strong between MSO(10) and MPl and we will use the two-loop RGE in the MSSM. The

default values in our analysis are tanβ = 3 and tanβ = 6.

3.2 Threshold correction and conversion to DR Scheme

We use the two-loop RG equations for the gauge and Yukawa couplings in the DR scheme with one-

loop SUSY threshold corrections at the electroweak scale [47,48]. The reason for NLO accuracy here

is the delicate dependence of the FCNC effects on yt(MZ) shown in Fig. 2. For scheme consistency

the one-loop threshold corrections must be included with two-loop RGEs. Above tGUT one-loop

accuracy is sufficient. In the MSSM we use the approximated formula from Ref. [48] that include

only potentially large corrections. For simplicity the decoupling scale is set to MZ . The initial
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Figure 4: Correlation of FCNC processes as a function of Mq̃(MZ) and ad
1(MZ)/Mq̃(MZ) for

mg̃3
(MZ) = 500 GeV and sgn µ = +1 with tan β = 3 (left) and tan β = 6 (right). B(b → sγ)[10−4]

solid lines with white labels; B(τ → µγ)[10−8] dashed lines with gray labels. Black region: m2
f̃

< 0

or unstable |0〉; dark blue region: excluded due to Bs − Bs; medium blue region: consistent with

Bs − Bs but excluded due to b → sγ; light blue region: consistent with Bs − Bs and b → sγ but

inconsistent with τ → µγ; green region: compatible with all three FCNC constraints.

What is really challenging for the CMM model is an observable not directly related to flavor

physics: the mass of the lightest neutral, CP-even Higgs boson. As already mentioned at the end

of Sec. 4, in order to make the corrections to the tree level Higgs mass large enough, the sfermions

of the third generation should not be too light because they enter together with the top mass

logarithmically in the radiative corrections (see Eq. (122)). This is triggered by the choice of tan β.

In Fig. 5 one can see the same parameter space as in Fig. 4 but with the predicted mass of the

lightest Higgs boson mass added (solid line with white labels). On the left hand side for tanβ = 3

the whole green region is excluded due to Mh0 < 114.4 GeV. For negative µ the mass even tends

to smaller values. Only for rather heavy masses, e.g. mg̃3
= 2500 GeV and Mq̃ ! 6500 GeV the

experimental bound can be satisfied. However, in this region of parameter space the constraints

from flavor violating processes become irrelevant. On the right hand side of Fig. 5 for tan β = 6 the

situation changes such than even for light gluino masses there exist allowed regions in the CMM

parameter space. Thus, we can summarize this correlation between flavor violation and Higgs mass

in the CMM-model:

small tan β ⇔ large flavor effects ⇔ (too) light h0

larger tan β ⇔ smaller flavor effects ⇔ sufficiently heavy h0

In light of the recent result from DØ of the like-sign dimuon charge asymmetry and the measured

CP violation in Bs → J/ψφ, it is worth studying how large the CP phase φs can actually be in



Higgs mass constraint
• like in mSUGRA, the weak scale gives one relation between 

µ and the soft SUSY breaking parameters

• like always in the MSSM, the Higgs
‘likes’ to be light tree level

(very) small values of tanβ
disfavoured

• one & two loops

• larger tanβ reduces yt and size of flavour effects

• could be relaxed by allowing the Higgs multiplets to have 
different Planck-scale masses from the sfermions (similarly 
to the ‘non-universal Higgs model’ (NUHM))
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where in the convention of [40] Z+ and Z− are the chargino mixing matrices, ZN is the neutralino

mixing matrix, ZL is the lepton mixing matrix, Zν = UD is the sneutrino mixing matrix and

xJi =
m2

ν̃J

m2
χ+
i

, yJi =
m2

l̃J

m2
χ0
i

. (119)

The loop functions are given by:
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Neglecting left-right mixing in the slepton sector, the rotation matrix is given as

ZL =

(
U∗
D 0

0 V #
CKM

)

. (121)

From this we can read off that in the neutralino contribution the two terms proportional to

Z2J∗
L Z3J

L ≈ U2J
D U3J∗

D dominates whereas the terms ∝ Z2J∗
L Z6J

L need LR-mixing.

4.4 The neutral Higgs mass

Another observable that is quite restrictive for the CMM model is the mass of the lightest neutral,

CP-even Higgs boson of the MSSM. At tree level its mass is bounded from above by the Z boson

mass. However, radiative corrections shift the mass to higher values. An approximate formula at

O(ααs) is given by [67]

M2
h = M2,tree

h +
3

2

GF

√
2 m4

t

π2

{

− ln

(
m2

t

M2
S

)
+

|Xt|2

M2
S

(

1−
|Xt|2

12M2
S

)}

− 3
GF

√
2αsm4

t

π3

{

ln2
(
m2

t

M2
S

)
+

[
2

3
− 2

|Xt|2

M2
S

(

1−
|Xt|2

12M2
S

)]

ln

(
m2

t

M2
S

)}

, (122)

where

Xt = −
At

yt
−

µ∗

tanβ
, (123)

mt = 165± 2 GeV is the MS mass of the top quark and

M2
S =

√
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q̃3
m2

ũ3
. (124)
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Figure 5: Same as in Fig. 4, but without labels and lines for b → sγ and τ → µγ. We show the

lightest Higgs mass in GeV (solid line with white labels) and the phase φs in degrees (gray labels)

for tan β = 3 (left) and 6 (right). φs depends on the CP phase ξ of the model; the values quoted in

the gray labels are the values of φs with maximal possible |φs|.

the CMM model. It is related to the free phase ξ defined in Eq. (21) which occurs in the Wilson

coefficient (see Eq. (77)) of the Bs −Bs system. In Fig. 5 we also compute the maximal (negative)

phase φs in the CMM model under the condition that ∆Ms lies within its 3σ-range and the hadronic

matrix element within its error bar.

From Fig. 4 we see that τ → µγ alone puts a lower bound on Mq̃, so that the squark masses of

the first two generations lie essentially above 1 TeV. One also realizes that the bound on B(τ → µγ)

is more constraining than the measured value of B(b → sγ). Fig. 3 shows that the dominantly right-

handed sbottom is about half as heavy as the down-type squarks of the first two generations. The

sample parameter point discussed in Eqs. (130–136) further shows that we can expect a dominantly

right-handed stop with mass around 500 GeV. The sleptons are heavy and seemingly out of the

discovery range of the LHC. On the other hand, the light gaugino-like chargino and neutralinos

should permit nice signatures in the “golden” trilepton search channels. Fig. 5 reveals that the

lower bound on the lightest neutral Higgs boson mass excludes the whole plotted region if tan β = 3.

In the tan β = 6 case this bound has a much milder effect, essentially leading to a preference of the

upper half of the plotted region, where ad
1 > 0. Remarkably, almost all of the allowed region permits

large effects in Bs−Bs mixing, with CP phases well in the range needed to explain the Tevatron

data and quoted in Eq. (87). That is, Bs−Bs mixing is much more sensitive to the new physics

effects than the rare decays entering our analysis. The light gauginos are, of course, a consequence

of our choice of Mg̃ = 500GeV in our numerical studies. We may ask how the patterns of Figs. 3–5

change, if Mg̃ is increased. In particular, one might expect that that the FCNC constraints become

max possible Bs mixing 
phase (degrees)

higgs mass     

excludes whole green region 
at tanβ = 3

higgs mass bound can be satisfied 
for tanβ = 6 (or greater)



Interplay 
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!  Combine measurements to elucidate structure of new physics. 

More information on the golden matrix can be found in 
arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312. 
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Conclusions
• SUSY GUTs are theoretical well motivated, viable, and 

predictive BSM scenarios

• A generic feature are correlations between hadronic and 
leptonic flavour violation, although details depend on the 
GUT model
There is also strong interplay between the mass spectrum 
(including Higgs mass) and the flavour violation, similar to 
the CMSSM

• The model analysed here makes predictions for hadronic 
and leptonic observables relevant to SuperB in terms of  a 
few BSM parameters, and can hopefully serve as a 
benchmark scenario for SuperB




