

Accelerator Summary SuperB Meeting Elba, Italy

> John Seeman (SLAC) June 1, 2011

Present & Past SuperB Accelerator Contributors

- M. E. Biagini, S. Bini, R. Boni, M. Boscolo, B. Buonomo, S. Calabro', T. Demma, E. Di Pasquale, A. Drago, M. Esposito, L. Foggetta, S. Guiducci, , S. Liuzzo, G. Mazzitelli, L. Pellegrino, M. A. Preger, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, A. Stella, S. Tomassini, M. Zobov (INFN-LNF)
- F. Bosi, E. Paoloni (INFN & University of Pisa)
- P. Fabbricatore, R. Musenich, S. Farinon (INFN & University of Genova)
- K. Bertsche, A. Brachman, Y. Cai, A. Chao, R. Chestnut, M. H. Donald, C. Field, A. Fisher, D. Kharakh, A. Krasnykh, K. Moffeit, Y. Nosochkov, A. Novokhatski, M. Pivi, C. Rivetta, J. T. Seeman, M. K. Sullivan, S. Weathersby, A. Weidemann, J. Weisend, U. Wienands, W. Wittmer, M. Woods, G. Yocky (SLAC)
- A.Bogomiagkov, I. Koop, E. Levichev, S. Nikitin, I. Okunev, P. Piminov, S. Sinyatkin, D. Shatilov, P. Vobly(BINP)
- J. Bonis, R. Chehab, O. Dadoun, G. Le Meur, P. Lepercq, F. Letellier-Cohen, B. Mercier, F. Poirier, C. Prevost, C. Rimbault, F. Touze, A. Variola (LAL-Orsay)
- B. Bolzon, L. Brunetti, G. Deleglise, A. Jeremie (LAPP-Annecy)
- M. Baylac, O. Bourrion, J.M. De Conto, Y. Gomez, N. Monseu, D. Tourres, C. Vescovi (LPSC-Grenoble)
- A. Chancé (CEA-Saclay)
- D.P. Barber (DESY & Cockcroft Institute)
- S. Bettoni (PSI)
- R. Bartolini, A. Seryi, A. Wolski (UK)
- Y. Zhang (IHEP, Beijing)
- K. Ohmi (KEKB)

SuperB footprint at LNF Frascati

Site close up Tor Vergata

. .. About 250000 m^2 of green field S. Tomassini

Ground x-section

Cantiere Roma - Comprensorio Universitario "Tor Vergata"

- SEZIONE GEOLOGICA INTERPRETATIVA

The SuperB Int. Site Committee April 19, 2011

International Site Committee Initial recommendations

- On the TOR VERGATA site, there exists a 10m thick layer of deposits. The opinion of the committee is that it is most likely that this layer will have to be removed to found the new machine on 'virgin' ground.
- The committee recommends that the approval procedures (and time) needed for formal Project Approval by the authorities for the TOR VERGATA site is verified.
- The committee recommends that the design and construction phases of the project are somehow de-coupled (i.e. not the same company)
- A detailed schedule should be developed highlighting the critical milestones e.g. deposit removal, checking of vibration levels, compare construction methods (TBM or cut & cover)
- A cooling scheme needs to be further investigated including discussions with local authorities for supply and discharge water.
- The committee learnt that it is believed power stability/ quality of the electrical network is adequate for both the Frascati and TOR VERGATA sites
- Ground stability / vibration is a potential 'show stopper' for the site and as such, these investigations should have top priority

Recent Vibration Measurements

In the 3 axes: the high peak of traffic becomes lower with time and its amplitude and bandwidth are well lower than the one from measurements near the highway

Measurements 100 m from highway

Vibrations of the highway well attenuated with the distance (100m)!!

Bolzon et al

18

Vibration budget

	Request (vertical displacement)	Measured (vertical displacement)
IP	300 nm	20-40 nm
Final Focus	300 nm	20-30 nm
Arcs	500 nm	20-30 nm

(see B. Bolzon and K. Bertsche Talks)

S. Tomassini

Raimondi

SuperB Arcs

 HER and LER arcs have conceptually the same lattice. LER arc dipoles are shorter (bend radius about 3 times smaller) than in the HER in order to match the ring emittances at the asymmetric beam energies.

What if LER is half size HER

Undulator insertions: length = 3.5m betax/y = 3.2m Optic flexible to change beta's and mu's

13

To Do list

- Iterate the layout and lattice optimization with site constraints
 - Work out the injection lines.

- Make the FF H/L L/R like for the V12 (add/subtract 30mrad to the FF L/R)

- Work out the vertical separation: hopefully find the solution for the two arcs vertically displaced by about 0.5m. This will double the availability for SR lines.

- Insert the Injection cells in the proper places

Oxford SuperB mini-workshop

SuperB miniworkshop

Main Page Agenda Transport Local Facilities Contact

The John Adams Institute and the Physics Department of QMUL are organising a mini-workshop to explore the possible interests of the UK accelerator and detector communities in the recently funded SuperB project.

The aim is to provide updated information on the various aspects of the project and to participate in discussions so that anyone with a potential interest in SuperB has the opportunity to step forward and participate.

The meeting will take place at Jesus College, Oxford on 18th and 19th of May 2011

We note that there is very limited accommodation via colleges during this period, and we therefore recommend that participants would arrange accommodation in local hotels or bed and breakfast via Daily info.

For further information and to register your interest, please click on the contact link on the left

Organising committee

A. Seryi JAI OxfordR. Bartolini JAI OxfordA. Bevan QMUL

Areas of interest emerged from the parallel session on accelerators

Low emittance tuning Linear optics correction Nonlinear optics correction

3 talks

Impedance computation Single bunch effects Multi bunch effect Codes development

2 talks

Diagnostics and feedback systems

> 2 talks + A. Drago's talk

Hardware Magnets and wigglers

1 talk

Bartolini

Linear optics correction with LOCO (R. Bartolini)

Emittance [2.78 - 2.74] (2.75) nm Energy spread [1.1e-3 - 1.0-e3] (1.0e-3) Coupling correction to below 0.1% V beam size at source point 6 µm

V emittance 2.2 pm

Very good control of the linear optics with LOCO

Magnets, Wigglers and Undulators (J. Clarke)

Conventional magnets

Dipoles, Quadrupoles, Sextupoles, ... Kickers & Septums DC, AC, & Pulsed Recent projects Diamond, ALICE, EMMA Wigglers and undulators

In-vacuum, Apple-II

Permanent magnets

Superconducting, SC helical

Recent projects include SRS, Diamond, ALPHA-X, ALICE, ILC

Codes for magnet modelling

Opera 2D, Opera 3D, Tosca ,Elektra CST EM Studio (3D) RADIA (3D) - very good for PM undulators

E- Cloud

Single-bunch instability mechanisms*

T. Demma

Buildup in SuperB V12 HER Dipoles

By=0.3 T; η=95% SEY=1.1

Summary by T. Demma

- Single bunch instability simulations for SuperB HER V12 taking into account the effect of solenoids have been performed using CMAD. They indicate a threshold density of ~10¹² e-/m³ (roughly 2 times previous estimates).
- The obtained thresholds have to be compared with build-up simulations using updated parameters to determine safe regions of the parameter space (SEY, PEY)...

Update on LER Multi-particle Simulation of IBS

M.E. Biagini, M. Boscolo, T. Demma (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC).

IBS Status

Demma

• The effect of IBS on the transverse emittances is about 30% in the LER and less then 5% in HER that is still reasonable if applied to lattice natural emittances values.

 Interesting aspects of the IBS such as its impact on damping process and on generation of non Gaussian tails may be investigated with a multiparticle algorithm.

•Started studying SuperB full lattice (including coupling and errors?)

What is CSR ? Coherent Synchrotron Radiation

S. Novokhatski

5/31/2011

Bunch self-field remakes itself moving in a magnetic field

The upper field lines take the position of the lower lines

The white box shows the bunch location The red arrow shows the bunch velocity vector

Green arrows show field line directions

The lower field lines take the place of the upper lines

S. Novokhatski

SuperB

Magnetic field plots

S. Novokhatski

5/31/2011

Two 90⁰ spin rotators scheme at LER

Spin is directed longitudinally at IP at two specific energies. It makes a half turn in the FF-arc when E = 1.4 GeV and it makes 1.5 turns at E=4.18 GeV (that's is nominal E)

Polarization scheme with 3 snakes (arc=120⁰ [#] +2 damping wigglers in the arc's middle)

Conclusion on polarization

- A scheme with two 90⁰ spin rotators provides up to 80% of the longitudinal polarization in LER at 4.2 GeV.
- Single snake scheme is feasible at E<2 GeV
- 3 snakes option looks not favorable
- Tolerances on the quads gradient integrals and the solenoid field integrals are in a range of few percents

Beam-Beam Simulations (2 size rings)

Full Turn ("Super-period")

- Interaction between "1" and "2".
 "3" unchanged
- 2. "1" full revolution with $2\pi v_s$ "2" and "3" half revolution with $2\pi (v_L/2)$
- Interaction between "1" and "3".
 "2" unchanged
- 4. "1" full revolution with $2\pi v_s$ "2" and "3" half revolution with $2\pi (v_L/2)$

Zobov

Symmetric Rings

Asymmetric Rings (2:1)

Asymmetric Case Beam Blowup

Zobov

Asymmetric Beam-Beam CONCLUSIONS Zobov

- 1. The coherent beam-beam resonances are a potential danger for the performance of Superb with asymmetric rings.
- 2. The problem can be avoided by placing the vertical tune of the long ring in the tune area above the integer (instead of the area above the half-integer). At least, beam-beam interaction and dynamic aperture are not critical issues for such a choice.

Problems of Tau-Charm factory lattice

A. Bogomyagkov, E. Levichev, P. Piminov, S. Sinyatkin

Budker Institute of Nuclear Physics Novosibirsk

- Breaking symmetry of the ring decreases energy acceptance.
- Introduction of insertions decreases energy acceptance.
- Manual tuning of phase advance per cell helps to increase energy acceptance.
- Manual tuning of additional sextupoles helps to increase energy acceptance.
- Chromatic functions matching is needed.
- New periodic cell is needed.

New Proposal for the Injection System

- Only the e⁺ beam is stored in the DR
- S band linac at 100 Hz
- Injection in each ring at 50 Hz
- 2 electron guns
 - a "high current" gun for positron production
 - a "low emittance" polarized gun for electron injection
- Additional 200 MeV linac for e⁻
- Reduced transfer lines and kickers for DR injection/extraction
- Conversion e^{-}/e^{+} at low energy 0.6 GeV as in CDR2

5/29/11

Damping Ring

A damping ring at 1 GeV is used to reduce the positron beam injected emittance

Injection into Main rings

zero dispersion at injection point $D_x^{st} = D_x^{inj} = 0$

non zero dispersion *Dxst* = *Dxinj* 1 0 and an energy offset d of the injected beam

Preger - Guiducci Scheme

A. Variola

We propose to stay with the SLAC gun in the positron line and to have a custom Polarised, low charge electron sources in the electron line

39

1428 - acc

2856 - acc

		(2 2 2 2 2)	(1120 400
Mean Energy (MeV)	302	287	295	333
E _{rms} (MeV)	21.4	32.3 (12)	16.83 (9.09)	5.2 (3.2)
Z _{rms} (mm)	2.7	6.4	8.89	3.5
X _{rms} (mm)	3.8	4.4	8.0	8.1
X' _{rms} (mrad)	1.02	1.11	1.69	1.4
E _x =X'X (mm.mrad)	3.8	4.6	13.0	11.4
Total Yield (%)	2.8	7.53	32.3	31.9
Yield 10MeV (%)	1.3	3.9	19.6	29.3

2

2856 - dec

(S-band)

With a positron injection of 10 nC and a yield of 3.9%, we will have 2.43 10⁹ positrons at 300 MeV ±10MeV (scenario 2 - 2.8 GHz)

Recap 4 Scenarios under investigation

Scenario

RF (MHz) – strategy

25MV/m for acceleration

Variola

Δ

3000 dec +

3

1428 - dec

(L-band)

L. Catani: Control Systems

Meta Data storage test (Catani)

test#3.1								
n x writing CU B core RAM 16CB								
writing every (msec)	#CU (Write)	#clients (Read)	#servers	#processes/ server	CPU load (%)			
20	60	20	1	1	3-5			
20	80	20	1	1 1				
20	80	20	2	1	2-3			
50	60	20	1	1	1-3			
50	80	20	2	2 1				
100	60	20	1	1	?			
	F			2 1				

Data Flow Design (Mazzitelli)

Control System (G. Mazzitelli)

WORKTO CARRY OUT

SuperB Control System Development Schedule

	•	2011	2012	2013	2014	2015	2016	2017
WP7	Computing & Controls							
	 Infrastructure design, test & development 							
	Controls library							
	Frontend & drivers							
	Users interface							
	High Level Software							
	 Accelerator code vs controls interface 						100-02100-02100-0210	*********
	Logbook & trouble ticket							
	Identification & Security							
	 Web tools, data access, and experiment data correlation 							
	 Electronic Management Data System 							
	Project Management Data System							
	Remote Control Room							
	 Accelerator infrastructure subsystems interface 							

O. Bourrion: RF Simulation and control

Time domain simulation

- Effect of non optimal detuning (klystron power)
- Klystron non-linearity effect (can be corrected in the FPGA)
- Small signal driver transfer function (was non linear in PEP2)
- Blocks in orange are not modeled yet (see next slide)

Bunch by Bunch Feedback Conclusions (A. Drago)

- New betatron and synchrotron bunch-by-bunch feedback systems have been succefully tested at DAFNE this year.
- The upgrade consists in using 50% bit more in conversion (8 → 12), in having more memory available for data tracking, in having much more powerful FPGA with more DSP inside and, last but not least, a perfect software compatibility with the previous systems
- Three applications have been developed or are in progress with minimum manpower and efforts.
- In particular a tune feedback could be easily implemented using the internal iGp12 diagnostics

Fast IP feedback (Drago) R&D activity: schematic plot

Simulations are necessary to find an algorithm with good noise immunity

Discussion of Accelerator Future Plans

- Discussed mechanisms of management structure
- Discussed potential contributions from teams:
 - Italy: LNF and INFN
 - France: Orsay, Saclay, LAL, IN2P3
 - Russia: BINP
 - UK: Oxford
 - US: SLAC
 - Others potential collaborators
- Next meeting at Frascati in December 2011