

The STAR program:

Science and advanced clock technology on small satellites

Sasha Buchman for the STAR Collaboration

GWADW 2011, Elba May 25th, 2011

STAR concept

Science

- 1) Lorentz Invariance Violations
- 2) Velocity boost c dependence "Kennedy-Thorndike Experiment"
- 3) >100x state of the art

Science & Technology on Small Satellites

Education driven International collaborations

Technology

 "Capable" small satellite bus 180 kg, 185 W, secondary payload
 Advanced frequency standards
 Precision thermal control

Education

- 1) Graduate & Undergraduate
- 2) 3-5 year projects
- 3) Student led tasks

Collaborating Institutions *Main Contributions* ALL Science and FP&O

Ames Research Center

PM, SE, I&T, and SM&A **KACST**

Spacecraft and Launch

Stanford University

PI and Instruments to TRL 4

German Space Agency et al

Instruments, Flight Clock

Instruments to TRL 4 Industrial Partner

Flight Instrument

Germany

- German Aerospace Center (DLR)
- ZARM & Bremen University
- Humboldt University, Berlin
- University of Konstanz

Kingdom of Saudi Arabia

King Abdulaziz City for Science and Technology (KACST)

United States

- NASA Ames Research Center (ARC)
- Stanford University
- Joint Institute for Laboratory Astrophysics (JILA)
- University of California-Davis
- >Industrial partner

ADVANCED FREQUENCY STANDARDS

 $\delta f/f \leq 10^{-13}/\sqrt{\text{Hz}}$

Optical cavities 1064 nm >100,000 finesse

Molecular clocks lodine 532 nm

Phase compensated fiber coupling

Compact & robust fiber coupler to cavity

NANO KELVIN THERMAL CONTROL

$$\delta T_{(Instrument)} / \Delta T_{(Outer shield)} \leq 10^{-9}$$

Nested thermal shields

Advanced control algorithms

Optical cavity thermometry

STANFORD MGRS GROUP DEVELOPMENTS PARALLEL TO STAR WORK

UV-LED AC charge management

UV-LED source

AC charge control

Non-contact electrometer charge measurement

Grating angular sensor

< 10^{-9} rad/ \sqrt{Hz} precission

Colladay and Kostelecky (1997)

"The natural scale for a fundamental theory including gravity is governed by the Planck mass M_P , which is about 17 orders of magnitude greater than the electroweak scale m_W associated with the standard model. This suggests that observable experimental signals from a fundamental theory might be expected to be suppressed by some power of the ratio:

$$r \approx \frac{m_W}{M_P} \sim 10^{-17}$$

THE STAR SENSITIVITY COULD CLOSE THAT GAP

HOW DOES ONE MEASURE CHANGES IN C?

(2) By comparing the length of two rods 'perpendicular' to one another (both measured with a light beam)

Kinematic approach to LIV

 v_{INSTR} , v_{CMB} = velocity of instrument, preferred frame

 θ_{INSTR} = angle of light beam (instrument) to the PF

in Special Relativity $C_{MM} = C_{KT} = 0$

Measuring KT

A velocity-dependent LIV would cause a $\Delta c/c$ variation at the orbital rate

Kennedy-Thorndike signal enhancement

- Signal modulated at satellite orbital variation ~1.5 hr
- > Signal modulated at orbital velocity differences ± 7 km/s
 - Diurnal Earth rotation signal
 - Yearly Earth orbital motion signal at 30 km/s @ 8766 hr

Disturbance reduction

- Microgravity
- Seismic quietness
- Relaxed stress due to self weight
- Far away from time dependent gravity gradient noises

KT Improvement in Space:

- Faster signal modulation ×4 (√16)
- Higher velocity modulation ×20 to ×30
- > Other considerations
- Net Overall Advantage **≥ 100**

- <0.30 km/s @ 24 hr

~ 1 to 3

KT history

Optical cavity

Key optical cavity parameters:

- $> \delta L/L < 10^{-17}$ at orbit and harmonics with 2 years of data
- $> \delta L/L < 10^{-17}$ at twice spin period with 2 years of data

Derived requirements:

- Expansion coefficient: < 10⁻⁹ per K
- Operating temperature: within 1 mK of expansion null (~ 15°C nom)
- >External strain attenuation: > 10^{12}
- Stiffness: $\delta L/L < 10^{-9}$ per g, 3-axis

➤Implied material: ULE glass

Optical cavity work at Stanford

Atomic reference

Next steps:

- set up of a compact lodine standard multi-pass cell
- baseplate made of Zerodur (for spacequalification and pointing stability)
- Using s.q. AI-Technology (HTWG Konstanz / EADS Astrium)

State of the art: lodine vs. cavity

Multi-can structure

Cavity $\delta L/L < 10^{-17}$ (2 yr data) at:

- orbital period and harmonics
 - twice spin period

Derived requirements (2 yr average):

➤Thermal stability of 10⁻⁸ K at orbit ➤Thermal gradient ~ 10⁻⁹ K/cm at orbit Maintain cavities temperature to 1 mK

Thermal enclosure

Main Requirements:

- ➤Thermal stability
- Stress attenuation
- ► Launch and space compatible

Thermal performance:

Strain attenuation model - FEA

- > Estimated strain attenuation: > 10^3 per can
- \succ Extrapolating to entire enclosure: > 10¹⁵
- Exceeds requirement by x1000

ADVANCED FREQUENCY STANDARDS

Optical cavities

 $\delta f / f \leq 10^{-13} / \sqrt{\text{Hz}}$

Molecular clocks

NANO KELVIN THERMAL CONTROL

Thermal shields

Control algorithms

Optical thermometry

$$\frac{\delta T_{(Instrument)} / \Delta T_{(Outer shield)} \leq 10^{-9}}{\delta F_{(Instrument)} / \Delta F_{(Outer shield)} \leq 10^{-12}}$$

Li-Ion Battery

Star Cameras

- ESPA compatible secondary payload on an EELV launch
- Circular sun-synchronous ~ 650 km orbit
- Launch 2015-2016 **Avionics** 2-year mission lifetime **Communications Panel** 0

MGRS technology development on multiple mini-satellites

UV LEDs for Precision Non-contact Charge Management

Current TRL: 4 Target TRL: 7/8	<u>Related/Prior Technology Development :</u>
 Concept Description: Space qualification AC charge management. Deep UV light emitting diodes Multiple UV LED's Complete charge management system Replicate ground experiment in space Target Program: Miniature drag free technology	 LED's radiation tested AC charge management laboratory tested Flight experiment performed in laboratory Mechanical prototype passed vibe test Electronics in protyping Partnership/Development Team: Ames: PM, SE, SMA, Mission operations Stanford: Science and Payload Design KACST: Spacecraft and Launch
 Development Risk/Reward: Replace existing Hg lamp technology Support high profile NASA missions with key technology demonstration in orbit (LISA) Development Focus: Demonstration of complete flight experiment in laboratory environment prior to flight build 	 Benefit to NASA: Lay groundwork for STAR Develop ties with academia and key international partners Develop groundbreaking technology for flagship missions (LISA) on small satellites
	Schedule:
 Potential Applications: Active charge control of free flying test mass Active charge control of isolated masses 	 Schedule: Engineering Model Complete: 5/24/2011 Critical Design Review: 7/6/2011 Flight Payload Complete: 11/1/2011

UV-LED experimental setup

UV-LED laboratory

Charge management results

500mV/40seconds = 12.5 mV/s = 0.125 pC/s (Capacitance = 10 pF)

Note that the inputs to the oscilloscope were flipped – in-phase driving leads to positive charge transfer as expected

GAS Experiment

Grating angular sensor setup

Results

STAR

Thank You Back-up Slides

Earthbound experiments

Berlin MM Experiment

- Rotating crossed optical resonators
- > 1 year of measurement / 100000 rotations
- ➢ 10⁻¹⁵ relative laser stability
- > no anisotropy at 1 part in 10^{17}

$$\left|1/2 - \beta + \delta\right| \equiv \boldsymbol{C}_{\boldsymbol{M}\boldsymbol{M}} \leq 8 \times 10^{-12}$$

S. Herrmann et al., PRD 80, 105011 (2009)

Paris KT Experiment

- Comparison of cryogenic microwave oscillator to hydrogen maser
- ➢ 6 year span of data record. September 2002 to December 2008.
- Analyzed as KT experiment for systematic siderial or annual modulation

$$\left|\beta - \alpha - 1\right| \equiv \boldsymbol{C}_{\boldsymbol{KT}} \leq 4 \times 10^{-8}$$

M. Tobar, P. Wolf et al., PRD 81, 022003 (2010)

STAR "Quad Chart"

STAR

 SCIENCE What is the nature of space-time? Is space isotropic? Is the speed of light isotropic? If not, what is its direction and location dependency? 3×10⁻¹⁸ to 10⁻¹⁷ 	 Mission design Circular sun-synchronous 650 km ircular orbit 180 kg,150 W Launch 2015-2016 2-year lifetime Class D Mission
Payload	Management
 Optical cavities ×4 1 nK enclosure I₂ clocks ×2 Laser-based 	 NASA Ames: PM, SE, SMA, Mission Operations Stanford: Science and Payload KACST: Spacecraft and Launch

High resolution Grating Angular Sets (Second microsat of MGRS series

Current TRL: 3 Target TRL: 7/8	Related/Prior Technology Development Efforts:
Concept Description: Space qualify Grating angular sensor(GAS) Laser system and read-out for GAS Piezo system for motion simulation Main components GAS Angular motion simulator	 Existing GAS laboratory technology Stanford University/KACST ongoing GAS program Complete experiment in laboratory Required bus developed by KACST for prior mission 50% of electronics developed
➢ Replicate ground experiment in space	Partnership/Development Team:
Target Program: Franklin/Edison GNC: miniature drag free technology	 NASA Ames: PM, SE, SMA, Mission Operations Stanford: Science and Payload Design KACST: Spacecraft and Launch
Development Risk/Reward:	Benefit to Ames:
 Low; low Risk/high Reward Laboratory prototype functional 	 Lay groundwork for STAR Develop ties with academia, industry, and key international partners
Development Focus: ➤ Demonstration of complete flight experiment in laboratory environment prior to flight build	 Develop groundbreaking technology for flagship missions (LISA) using small satellites <u>ROM Work Breakdown/Cost</u> \$2,100K
Potential Applications:	Milestone Schedule:
Multi-satellite Operations, Sensor Swarm, Laser comms Detential Customereit	 Engineering Model Complete: 2/1/12 Critical Design Review: 4/1/12
 Potential Customers: > LISA, LISA Pathfinder, Big Bang Observatory, GRACE Follow-on, DECIGO 	 Flight Payload Complete: 2/1/13 Launch: 10/2013 Mission Completion: 4/14

STAR

State of the art: lodine vs. cavity

Cavity block "COMSOL model"

35

The first mode of the assembly was found to be 77 Hz

First lateral mode: 77.6 Hz

First axial mode: 93.9 Hz

