EuPRAXIA@SPARC_LAB TDR Review Committee, 30 Nov-2 Dec 2022

RF SECTIONS AND RF POWER

David Alesini

RF SECTIONS AND POWER SOURCES: GENERAL LAYOUT

Courtesy E. Di Pasquale, F. Cardelli

X BAND RF MODULE: SCHEMATIC LAYOUT

X BAND RF MODULE: MECHANICAL LAYOUT

X BAND RF MODULES DISTRIBUTION

All the **modulators are distributed** in order to guarantee a reasonable space of 1.2 m between them. Variable RF waveguide straight sections allow to feed all the modules with the same inputs having the **same module configuration**.

RF MODULE POWER SOURCES: OPTIONS

CANON - BASELINE

- » 1x BOC on one line
- » Higher flexibility
- » Lower Modulator power requirements
- » Possible upgrade at high rep. rate of the Linac (400 Hz)

CPI – OPTION (HIGH EFFICIENCY)

- » 2x BOC on one line
- » Less flexibility
- » Different LE and HE module layout

RF MODULE POWER SOURCES: OPTIONS

		Klystron Canon	klystron CPI			
	Unit	E37119	VKX8311HE			
Frequency	MHz	11994		Onerretienel	Lin:	V///V0211A
Heater Voltage	V	20	30	Parameters	Unit	VKX8311A
Heater Current	A	28	38	RF frequency	GHz	11.994
Vk beam voltage	kV	318	415	BE Peak Power	MW	50
Ik cathode current	A	197	201		dD	10
Peak drive power	W	50	00	Gain	ив	48
Peak RF output Power	MW	25	50	Modulator Peak	MW	140
Average RF output power	kW	15	7,5	Operational		
Modulator peak power	MW	62,6	83,4	voltage	kV	420
Modulator Average power	kW	75,2	25	Operational		
Modulator flat pulse	us	3	3	current	A	320
RF pulse length	us	1,	5	PRF	Hz	100
Repetition Rate	Hz	400	100	Pulse length		1 Г
Gain	dB	47,0	50	(top)	us	1.5
Efficiency	%	40	55	Efficiency	%	40

Procurement High Rep. Rate Canon Klystron through Scandinova is ongoing: to be finalized beginning of 2023. We placed the order through Scandinova that will provide the modulator K300 and because it is difficult to directly buy from CANON.

Procurement High Efficiency High Power CPI Klystron concluded. Kickoff in the following weeks. CPI klystron is high efficiency and is a prototype. However, they guarantee the performance of the standard one.

STATUS OF THE WAVEGUIDE COMPONENTS REALIZATION AND TEST

COMPONENT	DESIGNED BY	STATUS	LEVEL OF POWER TO BE TESTED	COMMENTS
Pump units (rect. Wav.)	CERN	Fabricated and installed @ TEX	25 MW 1.5 μs and 70-35 MW 0.13 μs Compressed pulse 100 Hz	
Directional coupler	CERN	Fabricated and installed @ TEX	25 MW 1.5 μs and 70-35 MW 0.13 μs compressed pulse 100 Hz	
RF load	CERN	Fabricated and installed @ TEX	18-9 MW 0.13 μs compressed pulse 100 Hz	Currently, realization is by additive manufacturing. We are developing a design that can be implemented by milling
BOC pulse compressor	PSI	To be ordered (1 st half 2023)	140-70 MW 0.13 μs Compressed pulse 100 Hz	We also have a preliminary brazing free design
Mode converter circular/rectangular	INFN	To be ordered (1 st half 2023)	25 MW 1.5 μs 100 Hz	We are also looking at CERN design (many versions)
Pump unit (circ. Waveg.)	INFN	To be ordered (1 st half 2023)	25 MW 1.5 μs 100 Hz	
3dB hybrid	CERN	To be ordered	140-70 MW 0.13 μs Compressed pulse 100 Hz	

RF COMPONENTS DEVELOPMENTS

Currently, realization is by **additive manufacturing**. We are developing a design that can be implemented by **milling**:

- **Motivation**: the aim is to allow other companies to be able to realize this type of load even without the use of additive manufacturing
- The idea is to replace the vacuum pumping holes by «cutting» the entire load transversely leaving a 1 mm thick gap along the entire length of the waveguide.
- To do this, the thickness of the waveguide walls have been increased from 2 mm to 3 mm to decouple the field between the waveguide windings. The windings of the spiral have been recalculated to keep the overall length of the waveguide as in the original design.

Spiral load

Courtesy F. Cardelli and G. Di Raddo

X BAND ACCELERATING STRUCTURES DESIGN: RECAP

PARAMETER	Value		
	with linear	w/o	
	tapering	tapering	
Frequency [GHz]	11.9942		
Average acc. gradient [MV/m]	60		
Structures per module	2		
Iris radius a [mm]	3.85-3.15	3.5	
Tapering angle [deg]	0.04	0	
Struct. length L _s act. Length (flange-to-flange) [m]	0.94 (1.05)		
No. of cells	112	2	
Shunt impedance R [MΩ/m]	93-107	100	
Effective shunt Imp. $R_{sh_{eff}}$ [M Ω /m]	m] 350		
Peak input power per structure [MW]	/er per structure [MW] 70		
Input power averaged over the pulse [MW]	51		
Average dissipated power [kW]	1		
_{ut} /P _{in} [%] 25			
Filling time [ns]	130		
Peak Modified Poynting Vector [W/µm ²]	3.6	4.3	
Peak surface electric field [MV/m]	160	190	
Unloaded SLED/BOC Q-factor Q ₀	150000		
External SLED/BOC Q-factor Q _E	21300	20700	
Required Kly power per module (w/o att.)[MW]	20		
RF pulse [μs]	1.5		
Klystron maximum available power [MW]	25		
Rep. Rate [Hz]	100)	

X BAND ACCELERATING STRUCTURES PROTOTYPING: RECAP

Four main steps of prototyping:

1. Pre-prototypes on few cells and simplified couplers to test the brazing procedure, cells assembly, alignment etc: *done*

2. Full scale mechanical prototype: to test the overall brazing process of the full structure and the cell-to-cell alignment before and after brazing: *done*

3. 15 cells RF prototype for high power test w/o tuning, constant impedance: *currently ongoing*.

4. Final full scale structure prototype constant impedance: *order to be assigned*.

X-BAND STRUCTURE PROTOTYPING ACTIVITIES: MECHANICAL PROTOTYPE ASSEMBLY AND CHARACTERIZATION

Assembly procedure and dimensional characterization

Final structure (straightness ±15 μm, before brazing)

X-BAND STRUCTURE PROTOTYPING ACTIVITIES: MECHANICAL PROTOTYPE BRAZING

RESULTS

-Straightness \pm 15 μ m, after brazing (\pm 30 μ m required by BD)

-Vacuum test OK (except one coupler for a miss-positioning of the brazing alloy)

NOW:

-RF Prototype (15 cells) expected by January/February 2023 -FINAL structure: expected by September 2023

TEX FACILITY STATUS

- 1. The **TEst-stand for X-band** (TEX) is a facility conceived for **R&D and test on high gradient X-band accelerating structures** and waveguide components in view of Eupraxia@SPARC_LAB project. TEX is located in bld. 7 of LNF, which is being fully refurbished and upgraded to host the RF source and bunker.
- 2. It has been **co-funded by Lazio regional government in the framework of the LATINO** project (Laboratory in Advanced Technologies for INnOvation). The setup has been done in **collaboration with CERN** that provided the **CPI klystron** and it will be **also used to test CLIC structures**.
- 3. Not only a facility for accelerator structures but also R&D for: high power tests on RF components, LLRF systems, Beam Diagnostics, Vacuum and Control System
- 4. The authorization bureaucracy required many months but we are now ready to start the high power tests

Courtesy F. Cardelli and S. Pioli

Concrete Bunker and Modulator Cage with the RF Source

Control room and Rack room

TEX FACILITY SCHEDULE

* Radioprotection authorithies will allow TEX operations within first half of December

Courtesy of S. Pioli, E Di Pasquale

S BAND INJECTOR RF SCHEMATIC LAYOUT 1

S BAND INJECTOR RF SCHEMATIC LAYOUT 2

S BAND INJECTOR MECHANICAL LAYOUT

S BAND STRUCTURES PARAMETERS

PARAMETER	Structure lenght			
	3 m	2 m	2 m	
Frequency [GHz]		2.856		
Average acc. gradient [MV/m]	21	21	35	
Number of Structures	1	1	2	
Iris radius a [mm]	11.76	10.65		
Tapering of structure		2π/3 C.I.		
No. of cells	85		57	
Shunt impedance R [MΩ/m]	56	59		
Effective shunt Imp. $R_{sh eff}$ [M Ω /m]	109	114		
Peak input power in the structure [MW]	67.2	43.5	120	
Input power averaged over the pulse [MW]	38.6	25	69	
Average dissipated power [kW]	3	2	5.1	
P _{out} /P _{in} [%]	32			
Filling time [ns]		920		
Peak Modified Poynting Vector [W/µm ²]	0.43	0.37	1	
Peak surface electric field [MV/m]	70	69	115	
Unloaded SLED/BOC Q-factor Q ₀	150000			
External SLED/BOC Q-factor Q _E	21000			
Required Kly input power (w/o att.)[MW]	12.1	7.8	21.5	
RF pulse [μs]	4			
Rep. Rate [Hz]	100			

Klystron Canon E37314

PARAMETER	Value E37314
Frequency [GHz]	2,856
Maximum ouput power [MW]	60
Average power [kW]	24
Efficiency (%)	41
Gain (dB)	53
Pulse Length (μs)	4
Rep. Rate [Hz]	100
Beam Voltage [kV]	360
Beam current [A]	412

Required klystron powers

(w/o considering the waveguide attenuation):

 $K2 \Longrightarrow 20 MW$

K3 ⇒43 MW

X BAND RF DEFLECTORS POWERING: PRELIMINARY

THANK YOU

FOR YOUR ATTENTION