

EuPRAXIA@SPARC_LAB Start to end Simulations

C. Vaccarezza on behalf of WA1- Beam Physics & collaboration team

- Recommendations from TDR-RC report Jun 2022
- WA1- S2E simulations activity results

OUTLINE

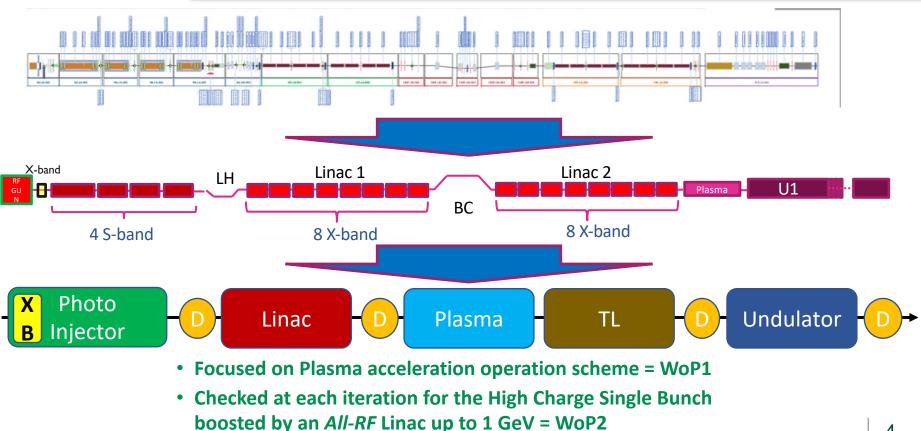
- Basic Layout Start to end Simulation Results
 - Parameter list update
- WA1- Main Topics-parallel studies:
 - X-band cavity at Gun exit
 - Jitter studies
 - 1.2 GeV operation
 - Non linear regime WPs
 - Plasma Tline
- Summary

From TDR Rev Comm Jun 2022

2.4 Start to End Simulations

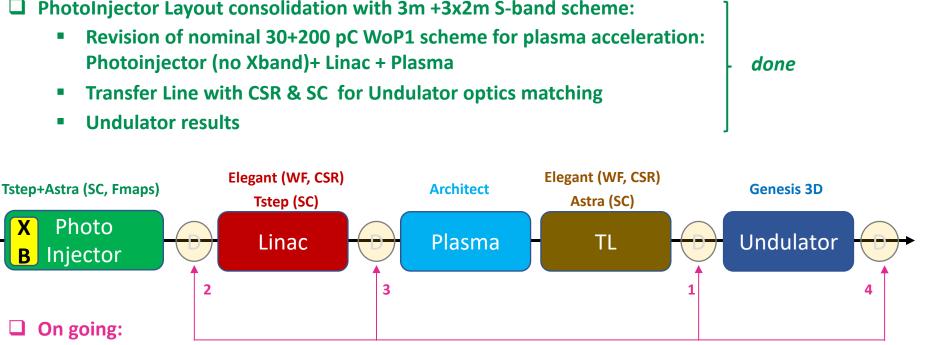
Good progress has been made since last meeting, on converging towards a solution for the beam line options before the plasma in optimizing the electron beam parameters of the drive and witness bunches for acceleration in plasma in the comb scheme.

Two options are under consideration with different length/number of S-band structures in the injector: one using 4x2 m, and another using 3+3x2 m S-band structures have been studied for their suitability to insert an X-band linearizer after the gun. They were also compared with earlier injector layouts.

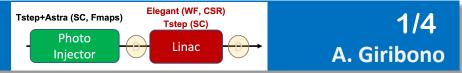

The first option offers a good solution for witness bunch charge up to 30 pC, whereas the second option looks better for higher charge of up to 50 pC. This latter solution does look promising and the RC endorses plans to study this option in more details. The planned tolerance and jitter studies will be important to make a final choice, as it may affect anticipated parameters of the driver/witness bunches at the entrance of the plasma.]

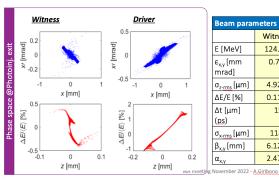
The RC is pleased to see that more computing resources have been made available since the last meeting for optimization of injector with focus on controlling beam quality at the exit of the plasma and for parallelization of the Architect code for plasma simulations.

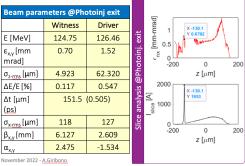
The RC recommends finalizing the injector layout and continuing to progress on tolerance and jitter studies.

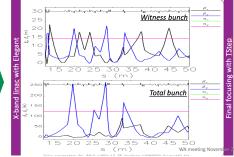


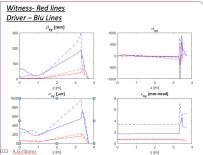
The Basic Layout

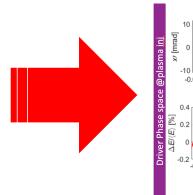

Start2End for the basic layout


 Diagnostics feasibility/efficiency check w virtual measurements (priority order) to finalize the basic layout


S2E «basic» details:


PhotoInjector




[mrad]

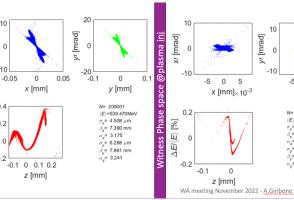
Linac

10

0

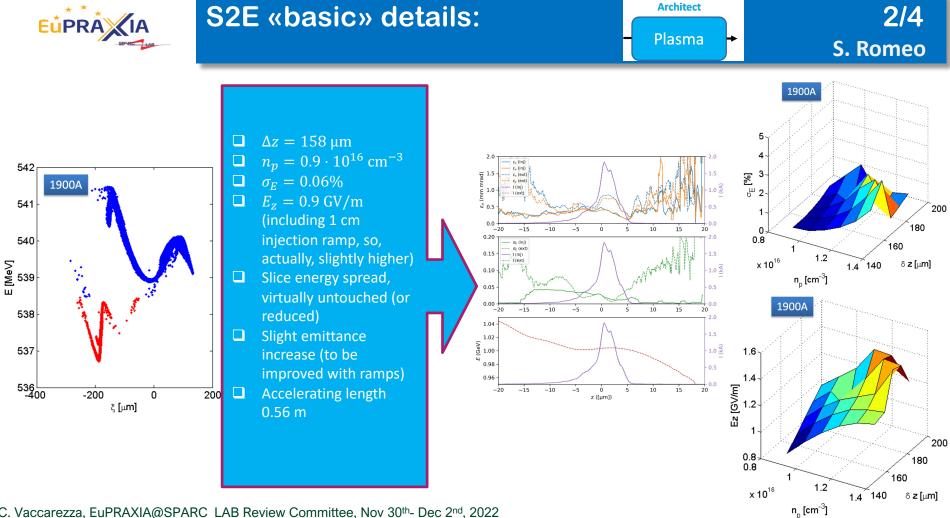
-5 0 5

N= 29999


a_= 0.830 $\sigma_y = 1.287 \ \mu m$ $\beta_v = 2.737 \ mm$

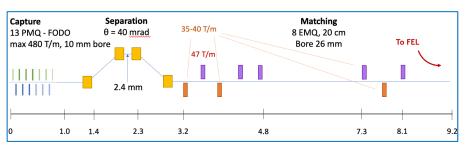
a_= 0.852

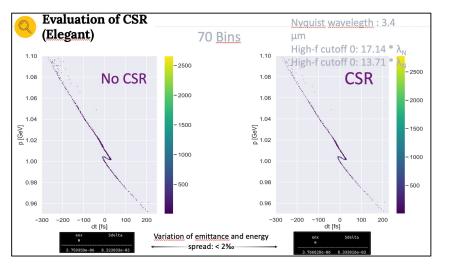
(E)=537.401MeV


 $\sigma_{x} = 1.213 \, \mu m$ β_= 2.662 mm

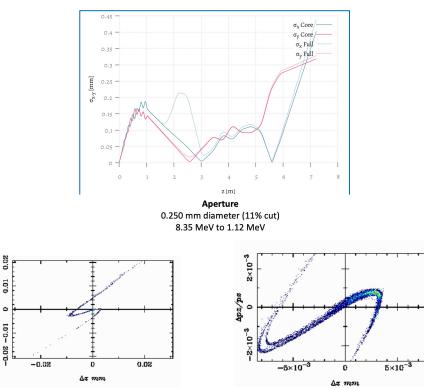
 $y \text{ [mm]}_{\times 1}$

proteinin prantan	neters @Pla	Sinta ingi		
	Witness	Driver		
E [MeV]	537.6	539.5		
ε _{x,y} [mm mrad]	0.68-0.70	2.9-5.3		
σ _{z-rms} [μm]	5.460	59.620		
ΔE/E [%]	0.057	0.095		
Δt [µm] (<u>ps</u>)	151 (0	0.505)		
σ _{x-rms} [µm]	1.2-1.3	4.5-6.3		
β _{x,y} [mm]	2.7-2.7	7.4-7.8		
α _{x.y}	0.83-0.85	3.2-3.2		

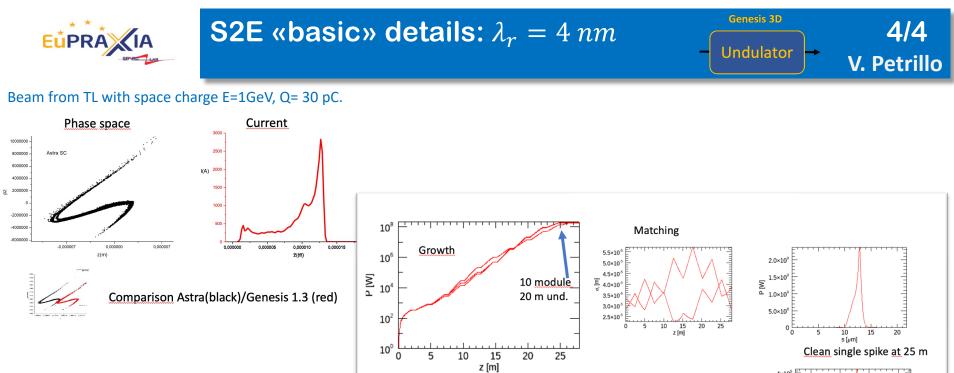

S2E «basic» details:


Elegant (WF, CSR) Astra (SC)

M. Rossetti Conti


3/4

Layout



Transverse beam size evolution w Space Charge (Astra)

d√zd⊽

%

m

rad

nm

0.1

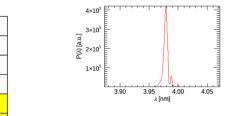
1.7 10^-5

3.975

11.5 10^-6, 16. 10^-6

2.2 10^11, 2.85 10^11

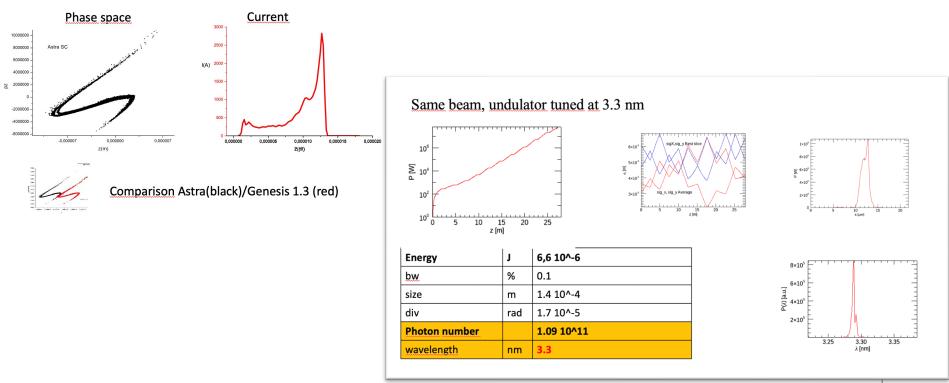
Energy


bw

size

div

Photon number


wavelength

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Nov 30th- Dec 2nd, 2022

Beam from TL with space charge E=1GeV, Q= 30 pC.

EuPRAXIA@SPARC_LAB Parameter List update 1

Nominal FEL parameters from CDR

Parameter	Unit	PWFA	Full X-band		
Radiation Wavelength	nm	nm 3			
Photons per Pulse	×10 ¹²	0.1	1		
Photon Bandwith	%	0.9	0.5		
Undulator Area Length	m	3	0		
ρ(1D/3D)	×10 ⁻³	1	2		
Photon Brilliance per shot	mm ² mrad ² bw(0.1%)	1 ×1	0 ²⁷		

FEL Parameters Nov 2022

Parameter	Unit	PWFA	Full X-band	
Radiation Wavelength	nm	3-4	4	
Photons per Pulse	×10 ¹²	0.1- 0.25	1	
Photon Bandwith	%	0.1	0.5	
Undulator Area Length	m	3	0	
ρ(1D/3D)	×10 ⁻³	2	2	
Photon Brilliance per shot	$\binom{s \ mm^2mrad^2}{bw(0.1\%)}$	1-2×10 ²⁸	1×10 ²⁷	

EuPRAXIA@SPARC_LAB Parameter List update 2

Electron Beam parameters from CDR

Parameter	Unit	PWFA	Full X-band
Electron Energy	GeV	1	1
Bunch Charge	pC	30	200
Peak Current	kA	1-2	1-2
RMS Energy Spread	%	1.1	0.1
RMS Bunch Length	μm	6-4	24-20
RMS norm. Emittance	μ m	1	1
Slice Energy Spread	%	0.03	0.02
Slice norm Emittance	mm-mrad	0.5	0.3

Electron Beam Parameters Nov 22

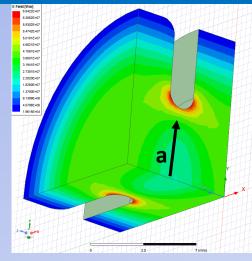
Parameter	Unit	PWFA	Full X-band
Electron Energy	GeV	1-1.2	1
Bunch Charge	pC	30- 50	200-500
Peak Current	kA	1-2	1-2
RMS Energy Spread	%	0.1	0.1
RMS Bunch Length	μ m	6-3	24-20
RMS norm. Emittance	μ m	1	1
Slice Energy Spread	%	≤0.05	≤0.05
Slice norm Emittance	mm-mrad	0.5	0.5

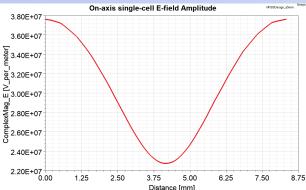
WA1-Main Topics parallel study

Xband cavity study

A. Bacci L. Faillace

NEW Requirements from Beam dynamics:


- E-beam Sigma_x=1.5-2 mm
 → cavity iris radius a=4mm
- Cavity Length = 10 cm
- 2pi/3 mode
- Accelerating Gradient
 TW option Eacc = 16.5 MV/m
 SW option Eacc = 16.3 MV/m


RF design – first step

Comparison

- TW structure, constant impedance
- SW structure

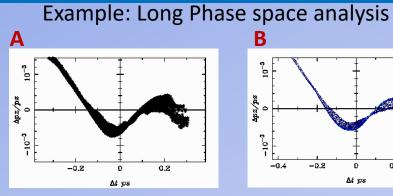
NB: for higher gradients/powers no X-band recirculator for SW

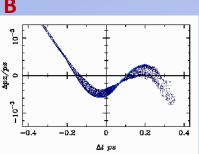
a = 4 mm	тw	SW
f	11.9942 GHz	11.9942 GHz
Q	6600	8,600
Vg	3.6 %	-
r	85.3 MΩ/m	80 MΩ/m
Eacc	16.5 MV/m	16.3 MV/m
alpha	0.63 1/m	-
Lt	10 cm	10 cm
Coupling β	-	2
Fill time Tf	9.3 ns	-
Build up τ	-	76 ns
Pin	3.2 MW	0.37 MW

Xband Insertion: Driver 200 pC – Witness 30 pC improvements

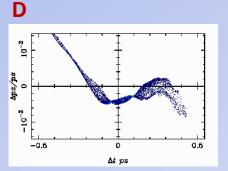
	Driver 200 pC			Witness 30 pC			Full Beam		
Older cases	σ _x	σz	ε _{n,x-y}	σ _x	< >	σz	ε _{n,x-y}	<e></e>	Δ_z
	μm	μm	mm mrad	μm	kA	μm	mm mrad	MeV	μm
A) WP 4 - 2222	218	55.0	1.54	522	1.00	2.6	0.43	102	150
B) WP-X 3 TW – 2222	112	55.0	2.68	229	0.80	3.2	0.32	166	150
C) WP-X 4 SW – 2222	106	55.0	2.78	220	0.77	3.3	0.34	167	149
D) WP-X 5 SW – 3 222	200	55.0	3.2	240	0.67	3.8	0.43	170	200

Check Traffic light colors: green – Yellow – red


This case: X-band + 3.0 m S-band + 4 x (2.0 m S-band) has been optimized to reach the referece Δz of <u>150 um</u>: Further, we produced simulations also for $\Delta z = 145$ um and 140 um

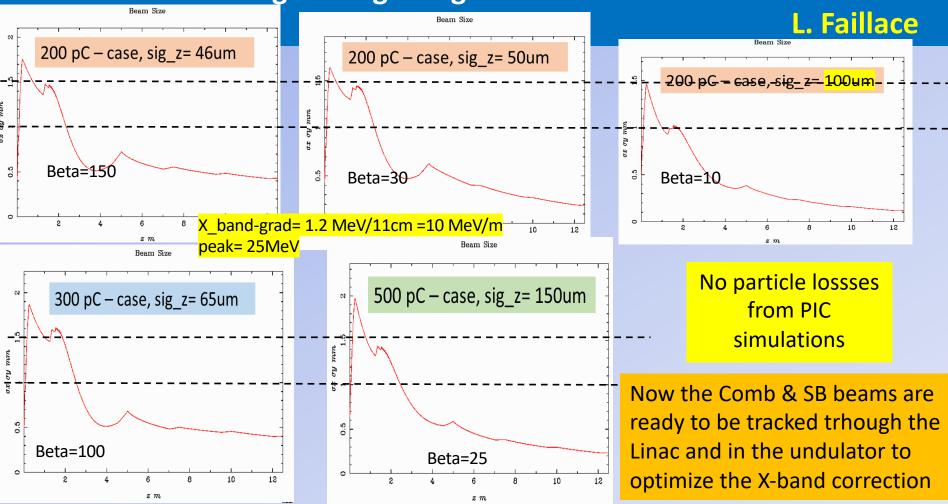

		Driver 200 j	рС		Witness 30 pC				Full Beam	
D) Improv. – 3222	σ _x	σ _z	ε _{n,x-y}	σ _x	< >	σ _z	ε _{n,x-y}	<e></e>	Δ_z	
	124	55.0	4.2	187	835	3.1	0.6	162	150	
	112	55.0	4.1	185	836	3.1	0.55	162	146	
	115	55.0	4.1	180	831	3.2	0.55	162	141	

To NOTE: the beam parameters are very close but with different distance between Driver and Witness


Xband Insertion: High Charge Single Bunch

A. Bacci L. Faillace

•
-0-5 0 0.6×10-4
$\Delta t ps$



Parameter		Α	В	С	D	E
Charge	(pC)	200	200	200	300	500
Current	(A)	600	500	210	550	400
σ_{z}	(µm)	46	50	100	65	150
$\varepsilon_{nx,y}$ slice	(µ rad)	0.5	0.5	0.5	0.5	0.8
$\Delta_E slice$	(keV)	20	20	8	10	20

10-3 ∆pz//pz 0-3 0 -1 1 ∆typs

Ε

Xband Insertion: High Charge Single Bunch

A. Bacci

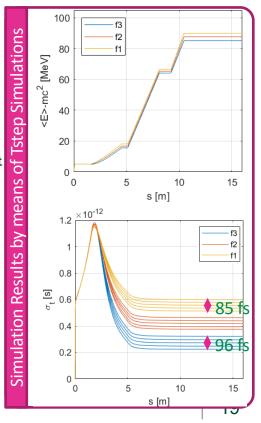
Jitter studies @SPARC_LAB

A. Giribono

First step: benchmark w SPARC_LAB observation

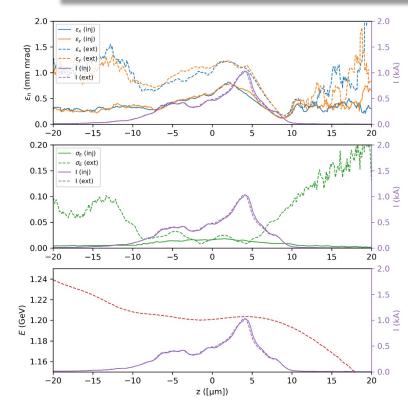
- Photoinjector sensitivity studies are on going in order to test the robustness of the reference working point, especially with regards to the compression phase stability, as needed to ensure a μ-scale bunch length.
- At first, the study is being focused on the RF phase jitters, in the range ±0.1 degree for EuPRAXIA (worst case, ±0.03 degree seems nevertheless feasible), that are strictly connected with the RF compression scheme efficiency.
- In the meanwhile, experimental activities are ongoing at the SPARC_LAB test facility, even if considering higher RF phase jitter errors (±1 degree) due to the current accelerator technology, so to benchmark the beam dynamics simulations made for EUPRAXIA@SPARC_LAB with the experimental results.
- The experimental activity performed at SPARC_LAB has regarded three working point, f1-f2-f3 described in Table, relying on the velocity bunching scheme each with a different compression factor.
- Simulations have been performed with the TStep code

WP	RF phase (deg)	Energy	(MeV)		Spread eV)	σ _z (rms - μm)	
		Exp	Sim	Exp	Sim	Exp	Sim
f1	-84.16	90.44	90.45	240	218.0	170.7	166
f2	-87.16	88.33	88.23	200	192.0	123.8	125.5
f3	-90.16	85.95	85.76	130	130.2	83	81.7


Jitter studies @SPARC_LAB A. Giribono

• The results are in terms of coefficient of arrival time jitter (ATJ) defined as

$$\Delta t_{\text{linac}} \approx \sum_{i=1}^{4} c_i \Delta t_i.$$


- Experimental results show that, as expected by theory and simulations, at the maximum explored compression phase:
- the main contribution to the time arrival jitter comes from the phase jitter of the first accelerating structure, with ±1 degree phase error translating in ≈ ±1ps
 → EUPRAXIA@SPARC_LAB worst case △Φ=0.1deg: driver and witness are expected to temporally jitter together of ±0.1 ps. The jitter between them, due to the fact that they enter the S1 with different compression phase that is linked to slightly different c_i, is under evaluation
- ±1 degree phase error on S1 results in ±17% error on the final beam length
 → EUPRAXIA@SPARC_LAB worst case ΔΦ=0.1deg: expected witness length 6±0.1 µm, expected driver length 60±1 µm

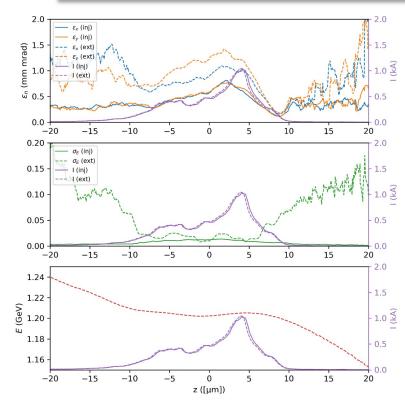
	WP	RF phase (deg)	c ₁ (laser)		c ₂ (RF gur	ı)	с ₃ (S1-S2)		$\sum_{i=1}^{4} c_1$	
			Meas.	Sim.	Meas.	Sim.	Meas.	Sim.	Meas.	Sim.
	f1	-84.16	0.12±0.05	0.13	0.02±0.04	-0.01	0.86±0.06	0.80	1.00±0.15	0.92
	f2	-87.16	0.04±0.06	0.06	0.04±0.05	-0.03	1.00±0.07	0.97	1.08±0.18	0.99
	f3	-90.16	-0.16±0.05	-0.12	-0.03±0.08	-0.05	1.14±0.06	1.08	0.95±0.19	0.91
Ċ	C. Vaco	carezza, Ei	PRAXIA@SPA	RC_LAB	Review Commit	tee, Nov	30th- Dec 2nd, 20)22		

Opt. 1 1300 A 500->1200 MeV

 $\Box \Delta z = 148 \,\mu m$

$$\Box n_p = 1.1 \cdot 10^{16} \text{ cm}^{-3}$$

$$\Box \sigma_E = \mathbf{0}. \mathbf{1}\%$$


- $\Box E_z = 0.95 \text{ GV/m} \text{ (including 1 cm injection ramp, so, actually, slightly higher)}$
- Slice energy spread, virtually untouched
- Slight emittance increase (to be improved with ramps)

Accelerating length 0.7 m

S. Romeo

Opt. 2 1900 A 700->1200 MeV

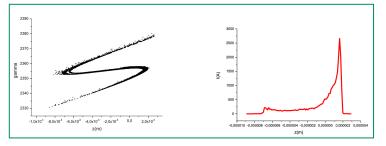
 $\Box \Delta z = 174 \,\mu m$

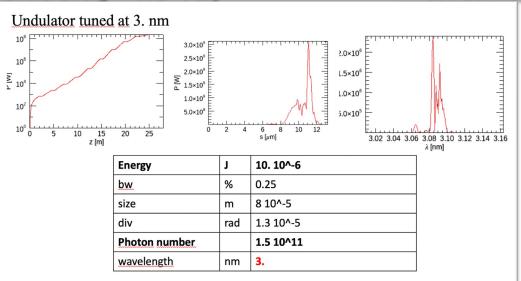
$$\Box n_p = 0.9 \cdot 10^{16} \text{ cm}^{-3}$$

$$\Box \sigma_E = 0.09\%$$

- $\Box E_z = 0.92 \text{ GV/m (including 1 cm injection ramp, so, actually, slightly higher)}$
- Slice energy spread, virtually untouched (or reduced)
- Slight emittance increase (to be improved with ramps)

Accelerating length 0.55 m

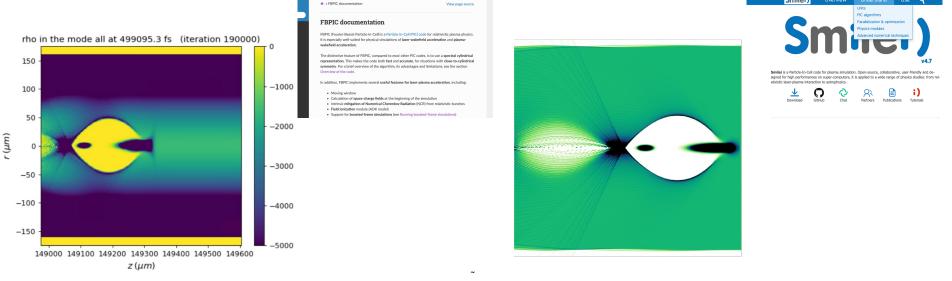

S. Romeo



«Exercise» for the undulator: (from plasma exit only - no TL)

V. Petrillo

Beam from plasma exit (80 cm capillary) E=1.2 GeV


Energy	J	3.6 10^-6	
bw	%	0.26	
size	m	7.5 10^-5	
div	rad	1.15 10^-5	
Photon number		0.45 10^11	
wavelength	nm	2.52	

Non linear regime WPs

A. R. Rossi

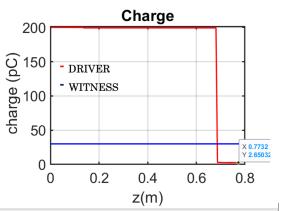
In order to correctly simulate Working Points where the Q value exceeds 0.5, we are starting to employ the quasi-3D pic codes FBPIC [1] and Smilei [2]. With these codes, phenomena like hose instability can also be simulated.

The WP under consideration has $q_W = 50$ pC, $q_D = 500$ pC and Q > 2 (depending on driver transverse size). The goal is to generate accelerating fields well in excess of 1 GV/m.

- [1] https://fbpic.github.io
- [2] https://smileipic.github.io/Smilei/index.html#
- C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Nov 30th- Dec 2nd, 2022

PLASMA Transfer Line

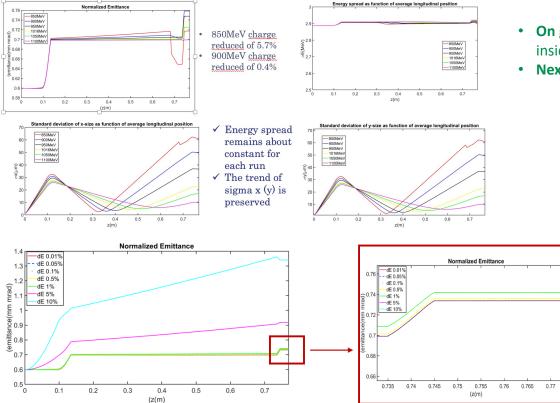
Low current configuration : lens-collimator-lens


A new beam line was designed to test the line at lower currents close to those currently reachable

	1 (cm)	d(cm)	I(kA)	r (µm)
lens1	4.0	9.5	0.85	500
lens2	1.0	73.5	0.80	500
coll	3.0	68.5	-	150

- ✓ transfer line of 74.5cm
- $\checkmark~$ No change in bunch charge
- ✓ Energy spread remains about constant
- $\checkmark~$ 1.3% driver charge at 74,5 cm

- Simulations have been perfomed by means of GPT for beam dynamics and a Matlabbased code for the plasma lons GPT State MATLAB
- Witness macro particles 29934
- Diver macro particles 293730



PLASMA Transfer Line

P. lovine

Energy variation from 850 MeV to 1100MeV

- **On going:** Architect code to verify the emittance growth inside active plasma lenses
- Next: Geant 4 simulations to include electromagnetic processes (Production of gamma rays, Bremsstrahlung, Multiple scattering,...).
 - Parametric studies with different beam configurations.

- $\checkmark~$ No change in bunch charge
- ✓ Energy spread remains about constant for each run
- ✓ The trend of sigma x (y) is preserved

0.775

TD-RC Recommendations

This latter solution (3m + 3x2m S-band) does look promising and the RC endorses plans to study this option in more details..

The planned tolerance and jitter studies will be important to make a final choice, as it may affect anticipated parameters of the driver/witness bunches at the entrance of the plasma..

In particular:

Actions completed/non

The PhotoInjector Layout has been consolidated with the 3m +3x2m S-band scheme

The study has started with the benchmark of the simulation code/procedure with experimental results from SPARC_LAB, to provide the most realistic predictions for EuPRAXIA at SPARC_LAB. The work now has to be completed

- Now we have to address the capture& matching Tline after the plasma to not loose the beam quality and optimize the undulator performance,
 - The X-band at the gun exit could help reducing the twisting of the long phase space of the plasma accelerated beam after the HE separation chicane

• A dogleg with R₅₆< 5E-4 will be studied C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Nov 30th- Dec 2nd, 2022

Next steps & Conclusions/MS

- Check of the diagnostics & beam measurements before and after the plasma
- □ Finalize plasma focusing w ramps
- □ Rise number of photons at undulator exit ⇒comparison with the "all_RF" beam of same charge (the 50+230 pC bem is ready to be simulated in plasma)
- □ Finalize spectrometers & dumpers
- □ Finalize 2nd transfer line to ARIA undulator

Reasonable milestones:

- May 2023: Stability&jitter sensitivity studies plus virtual measurements
- June 2023: First results on laser heater parameters w MBI studies for *«all RF»* beam

Thanks for your attention