*m*_{top} from (energy peaks in the) B-hadrons decay length

NOV. 25 2022 ROBERTO FRANCESCHINI (ROMA 3 UNIVERSITY)

2204.02928 + WIP with S. Airen, K. Agashe, J. Incandela, D. Kim, D. Sathyan

Abitofhistory

How special is this invariance?

SOJ SOJ

The sensitivity to the **boost distribution** is the key

How special is this invariance?

labe changes, beak do

mechanism 0.01 • • , 100 150 E_b [GeV] E_b [GeV] 100 150

207

message: LO effects are well under control - CMS at work!

Mtop=173.1 ± 2.5 GeV (stat)

Proof of the concept: 5/fb LHC 7 TeV

b-jet energy (LO+PS) 100 pseudo-experiments from <u>MadGraph5+Pythia6.4+Delphes</u> (**ATLAS-2012-097**)

2-parameters fit: peak position, width of the distribution

1209.0772 - Agashe Franceschini and Kim

message: LO effects are well under control \rightarrow CMS at work!

Mtop=173.1(1±\alpha/\pi)± 2.5 GeV (stat)

Proof of the concept: 5/fb LHC 7 TeV

b-jet energy (LO+PS) 100 pseudo-experiments from <u>MadGraph5+Pythia6.4+Delphes</u> (**ATLAS-2012-097**)

2-parameters fit: peak position, width of the distribution

1209.0772 - Agashe Franceschini and Kim

CMS PAS TOP-15-002

1/E dN_{bjets}/dlog(E CMS 24 Preliminary 22 20 Incalibrated Measuremen E_{peak} = 66.28 ± 0.50 GeV 18 $m_t = 170.37 \pm 0.82 \text{ GeV}$ 16 **Calibrated Measurement** $E_{peak} = 67.45 \pm 0.71 \text{ GeV}$ $m_t = 172.29 \pm 1.17 \text{ GeV}$ rtainty Data-Fit 3.8 4.2 4.4 4

Service Servic

$m_{\rm t} = 172.29 \pm 1.17$ (stat.) ± 2.66 (syst.) GeV

I9.7 fb ⁻¹ (8 TeV)	Source of uncertainty	δE_{peak} (GeV)	δm_t (GeV)
Fit Results	Experimental uncertainties		
Mean=4.194 ± 0.008	Jet energy scale	0.74	1.23
Width= 0.595 ± 0.014	b jet energy scale	0.14	0.22
$\chi^{2}/nat=0.920$ –	Jet energy resolution	0.18	0.30
	Pile-up	0.01	0.02
	b-tagging efficiency	0.12	0.20
	Lepton efficiency	0.02	0.03
	Fit calibration	0.14	0.24
	Backgrounds	0.21	0.34
	Modeling of hard scattering process		
· · · · -	Generator modeling	0.91	1.50
	Renormalization and factorization scales	0.13	0.22
	ME-PS matching threshold	0.24	0.39
	Top p_T reweighting	0.90	1.49
	PDFs	0.13	0.22
┝──┿──┿──┤	Modeling of non-perturbative QCD		
	Underlying event	0.22	0.35
	Color reconnection	0.38	0.62
4.6 , 4.8	Total	1.62	2.66
log(E)			

leading uncertainty from theory can be reduced

pT(top) reweighting smaller than other methods (Lxy, $pT\ell$...)

A 2010

 Δ (th)=±0.6 GeV @NLO

Beyond JES

CANCA SO10

 Δ (th)=±0.6 GeV @NLO

Beyond JES w/hadrons

Agashe, RF, Kim, Schulze - 1603.06536

A 2010

 Δ (th)=±0.6 GeV @NLO

Beyond JES w/hadrons

NLO sensitive to the scale choice: ±3.5 GeV on mtop

A 2010

 Δ (th)=±0.6 GeV @NLO

Beyond JES w/hadrons

2210.06078

NNLO sensitive to the scale choice: $\pm 3.5/(2?)$ GeV on m_{top}

POD 2017

	Рутніа8 parameter	range	Monash default
$p_{T,\min}$	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
$lpha_{s,{ m FSR}}$	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.1365
recoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
b quark mass	5:м0	3.8-5.8 GeV	$4.8 \mathrm{GeV}$
Bowler's r_B	StringZ:rFactB	0.713-0.813	0.855
string model a	StringZ:aNonstandardB	0.54-0.82	0.68
string model b	StringZ:bNonstandardB	0.78-1.18	0.98

	parameter	range	default
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	1
Power in maximum cluster mass	CLPOW	1.8 - 2.2	2
Maximum cluster mass	CLMAX	3.0 - 3.7	3.35
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.18
Smearing width of B -hadron direction	CLMSR(2)	0.1 - 0.2	0
Quark shower cutoff	VQCUT	0.4 - 0.55	0.48
Gluon shower cutoff	VGCUT	0.05 - 0.15	0.1
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.75
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.95

Beyond JES w/ hadrons

Corcella, RF, Kim - 1712.05801

A 2017

	Рутнія8 parameter
$p_{T,\min}$	TIMESHOWER:PTMIN
$lpha_{s,\mathrm{FSR}}$	TIMESHOWER: ALPHASVA:
recoil	TIMESHOWER:RECOILTOCO
<i>b</i> quark mass	5:м0
Bowler's r_B	StringZ:rFactB
string model a	StringZ:aNonstandar
string model b	StringZ:bNonstandar

	pa
Cluster spectrum parameter	PS
Power in maximum cluster mass	C
Maximum cluster mass	
$CMW \Lambda_{QCD}$	Q
Smearing width of <i>B</i> -hadron direction	CL
Quark shower cutoff	V
Gluon shower cutoff	V
Gluon effective mass	RM
Bottom-quark mass	RN

Beyond JES w/ hadrons

1-201-

				50 000			8000		$\sim \alpha_{s,FS}$
				10 000	-	$$ $m_b = 5.8 \text{ GeV}$	6000	10	$\alpha_{s,FSI}$
\mathcal{O}	Rango	$(\mathcal{M}_{\mathcal{O}})$				$\Delta_{ heta}^{(m_t)}$			
Сс н Ка	Italige	Δm_t	$lpha_{s,FSR}$	m_{b}	$p_{T,\min}$	a	b and b	r_B	recoi
E_B	28-110	0.92(5)	-0.52(2)	-0.21(3)	0.057(4)	-0.02(2)	0.06(2)	-0.10(5)	-0.022(
$p_{T,B}$	24-72	0.92(3)	-0.54(2)	-0.21(2)	0.056(4)	-0.03(2)	0.07(1)	-0.09(4)	-0.023(
$m_{B\ell,{ m true}}$	47-125	1.30(2)	-0.241(8)	-0.072(6)	0.022(2)	-0.007(5)	0.023(6)	-0.02(2)	-0.008(
$m_{B\ell^+,{ m min}}$	30-115	1.16(2)	-0.282(5)	-0.078(7)	0.024(2)	$-0.011(7)^{2}$	0.021(7)	-0.04(2)	-0.010(
$E_B + E_B$	83-244	0.92(4)	-0.50(2)	-0.21(2)	0.056(6)	-0.02(2)	0.07(3)	-0.08(6)	-0.020(
$m_{BB\ell\ell}$	172-329	0.96(2)	-0.25(1)	-0.10(1)	0.028(3)	-0.01(1)	0.026(7)	-0.03(3)	-0.008(
$m_{T2.B\ell, ext{true}}^{(ext{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(
$m_{T2,B\ell,\min}^{(ext{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(
$m_{T2}^{(\ell u)}$	0.5-80	-0.118(7)	-0.03(2)	0.00(2)	0.002(8)	0.00(2)	-0.01(2)	0.00(7)	0.004(
$m_{\ell\ell}$	37.5-145	0.40(5)	-0.03(5)	-0.01(4)	0.00(1)	0.01(5)	0.01(4)	0.0(1)	0.00(1
$E_\ell + E_\ell$	75-230	0.54(5)	-0.03(3)	0.00(3)	0.003(9)	0.01(3)	-0.00(2)	0.06(9)	0.003(
E_ℓ	23-100	0.48(4)	-0.02(5)	0.00(5)	0.004(9)	0.01(4)	-0.01(4)	-0.06(9)	0.003(
				0	.0 0.2 0.4	0.6 0.8 1 $p_{T,B}/p_{T,j_b}$.0 0.0	0.2 0.4 m _{BE}	0.6 0.8 $_{3}/m_{\bar{j}_{b}j_{b}}$

Beyond JES w/ hadrons

Corcella, RF, Kim - 1712.05801

Pythia8

- $\alpha_{\rm s}$ needed at 1% \bullet
- m_b needed at 3%
- all the rest needed at 10% \bullet

Herwig6

- $\Lambda_{\rm QCD} \Rightarrow \alpha_{\rm s}$ needed at 1% \bullet
- m_{b,g} needed at 1%
- cluster mass spectrum (PSPLT, CLPOW, CLMAX) needed at 10%
- all the rest needed at "100%"

SO17

Beyond JES w/ hadrons Corcella, RF, Kim - 1712.05801

Monte Carlo calibration targets

Pythia8

- a_s needed at 10% \bullet
- m_b needed at 10%
- $r_{\rm B}$ needed at 10% \bullet
- all the rest needed at "100%"

Herwig6

- $\Lambda_{\rm QCD} \Rightarrow \alpha_{\rm s}$ needed at 3% \bullet
- m_{b,g} needed at 2%
- cluster mass spectrum (PSPLT, CLPOW, ightarrowCLMAX) needed at 20%
- all the rest needed at "100%" ightarrow

200

dependence on the dynamics (e.g. production of top at LHC)

A 201 (7

7

dependence on the dynamics (e.g. production of top at LHC)

- variation well under GeV on m_t , JES uncertainty as large as

- either full reconstruction of a B-hadron energy in tracker or
- Scale(s) variation(s) of FF point towards α_s expansion up to NN(N)LO, demanding MC parameters sensitivity. Issues

Summary and outlook (back then)

- this remnant
- possibly cosmic rays physics

full B-hadron reconstruction in tracker not pursued yet length-based m_t measurement was identified as a bearing some potentially interesting remnant of the energy peak invariance, but no concrete technical solution to dig out

other interesting applications identified for m_W and

Summary and outlook (back then)

- this remnant

Today's talk

other interesting applications identified for m_W and possibly cosmic rays physics

full B-hadron reconstruction in tracker not pursued yet length-based m_t measurement was identified as a bearing some potentially interesting remnant of the energy peak invariance, but no concrete technical solution to dig out

Goal of the present work SET TARGETS FOR THE CRITICAL ASPECTS OF THIS MEASUREMENT

- level method.
- aspects)

Propose a description of the hadron observable decay length rooted in the key elements of the successful jet-

Describe a template-fitting procedure that leverages the good understanding at the quark and jet-level, and allows to test the moving parts (e.g. hadronizaton, other MC

Goal of the present work

SET TARGETS

FOR THE CRITICAL ASPECTS OF THIS MEASUREMENT

- Will not identify a set of tools/calculations that are best *today* to carry out the measurement
- Will try to identify the **weak points** of our chain of tools/ computations and set targets for the improvements we need to get (likely similar to other hadron-based methods)
- Will show that starting from energy-peak considerations the m_t extraction from decay length can withstand changes in the top quark production kinematics, e.g. changes of $p_{T,t}$.

Goal of the present work

SET TARGETS

TLL

FOR THE CRITICAL ASPECTS OF THIS MEASUREMENT

- Will not identify a set of tools/calculations that are best *today* to carry out the measurement
- Will try to identify the **weak points** of our chain of tools/ computations and set targets for the improvements we need to get (likely similar to other hadron-based methods)
- Will show that starting from energy-peak considerations the m_t extraction from decay length can withstand changes in the top quark production kinematics, e.g. changes of $p_{T,t}$.

dep. on EB · exp l_B/20038 $dE_{B} D(E_{B}, E_{b})$ Shower+Hadroniz Adjustments, Decays Recoil, ... ation Se zo

Our template 26 26 8 - C **Proton PDF Top production** Top decay

dep. on EB $dE_b exp(w(\frac{E}{E^*} + \frac{E^*}{E})^{\nu})) dE_b D(E_b, E_b) \cdot exp(l_b/c_o c_{\beta^*})$ Shower+Hadroniz Adjustments, Decays ation Recoil, ...

Our template

$$G^{\text{fit}}\left(L_B; E_b^{\text{rest}}, w, \nu\right) = \int_{E_{B,\min}}^{E_b} dE_B \int_{E_{b,\min}}^{E_{b,\max}} dE_b \frac{1}{N(w)} \exp\left[-w\left(\frac{E_b}{E_b^{\text{rest}}} + \frac{E_b^{\text{rest}}}{E_b}\right)^{\nu}\right] \times \\ \sum_i D_i\left(\frac{E_{B_i}}{E_b}; E_b\right) \frac{f_i m_{B_i}}{c\tau_{B_i}^{\text{rest}} \sqrt{E_B^2 - m_{B_i}^2}} \exp\left(-\frac{L_B m_{B_i}}{c\tau_{B_i}^{\text{rest}} \sqrt{E_B^2 - m_{B_i}^2}}\right)$$

- select sample with b-jets 40 GeV < E_{bjet} < 450 GeV, E_B > 7 GeV
- •
- conceivable to use track-only jets (not explored yet)
- compute the template using D_i from the MC-truth (will discuss related uncertainty)
- compute template using f_i from MC-truth (will discuss related uncertainty)

we checked that JES impact on acceptance through E_b is reflected in 80 MeV in top quark mass for JES@1%

Our selection

		CMS charged-tracks	our work
	e	$p_T > 30 \text{ GeV}, \eta < 2.4$	$p_T > 25 \text{ GeV}, \eta < 2.4$
$\ell + jets$	μ	$p_T > 26 \text{ GeV}, \eta < 2.1$	$p_T > 25 \text{ GeV}, \eta < 2.1$
	j	$N_j \ge 4, p_T > 30 \text{ GeV}, \eta < 2.5$	$N_j \ge 4, p_T > 25 \text{GeV}, \eta < 2.5$
$2\ell + jets$	e,μ	$p_T > 20 \text{ GeV}, \eta < 2.4$	$p_T > 25 \text{ GeV}, \eta < 2.4$
	SF	$M_{\ell\ell} > 20 \text{ GeV}, M_{\ell\ell} - m_Z > 15 \text{ GeV}$	$M_{\ell\ell} > 20 \text{ GeV}, M_{\ell\ell} - m_Z > 15 \text{ GeV}$
	OF		Ι
	j	$p_T > 30 \text{ GeV}, \eta < 2.5$	$p_T > 25 \text{ GeV}, \eta < 2.5$
		$E_T^{\text{miss}} > 40 \text{ GeV}$	$E_T^{\text{miss}} > 40 \text{ GeV}$

Ourfit

POTENTIAL FOR A COMPETITIVE MEASUREMENT WITH THE CURRENT DATA SET!

Ourfit

POTENTIAL FOR A COMPETITIVE MEASUREMENT WITH THE CURRENT DATA SET!

Uncertainties

Uncertainty in the definition of the template

- range of E_{b-jet} can bias the extracted top quark mass •
- p_T cut for a *j* and ℓ can bias the extracted top quark mass
- getting wrong E_b at 1% is reflected in 80 MeV shift in top quark mass

Uncertainty in the definition of the template

$m_{B_i}, \Gamma_{B_i}, f_i$

Hadron	Mass (MeV) $[25]$	Lifetime $(10^{-12} \text{ s}) [27]$	Fraction
B^{\pm}	5279.34 ± 0.12	1.638 ± 0.004	42.9~%
B^0	5279.65 ± 0.12	1.519 ± 0.004	42.9~%
B_s^0	5366.88 ± 0.14	1.516 ± 0.006	9.5~%
Λ_b^0	5619.69 ± 0.17	1.471 ± 0.009	3.6~%

- Hadrons masses and lifetimes need to be know at least as precisely as the target for m_t . Current knowledge is sufficient for δm_t below 500 MeV
- As hadron masses and lifetimes are not too different among B-hadron species, the required knowledge of f_i can be O(10) times worse than the target for m_t . Current knowledge might be fine, but better get rid of e^+e^- and $p\bar{p}$ if possible.

Uncertainty in the production mechanism

- Events reweighted according to top quark $\ensuremath{p_T}$
- χ^2 template fit for our energy-peak based template and for a template of simpler L_{xy}

174 -173 -172 -171 -176 -175 -174 -173 -172 -

171

172

Measured m_t [GeV]

176 -

175

$\frac{\tilde{w}}{w} = 1 + \alpha \theta (p_t < 400) (p_t - 200)$

Input m_t [GeV]

174

175

176

173

Summary of uncertainties

$$Tm_t^{(E_B, peak)} = \frac{0.5 \text{ GeV}}{\sqrt{\mathcal{L}/100 \text{ fb}^{-1}}} (\text{stat.})$$

$$"N^3 \text{LO"} \oplus 0.5 \text{ GeV} \cdot \left(\frac{0.1\%}{\frac{\delta D_i}{D_i}}\right)$$

$$\text{doable} \oplus 0.3 \text{ GeV} \cdot \left(\frac{5\%}{\frac{\delta f_i}{f_i}}\right)$$

$$\bigoplus_{p_{T,t}} \text{negligible}$$

$$\bigoplus_{m_{B_i}} \text{negligible}$$

$$\bigoplus_{\Gamma_{B_i}} \text{negligible}$$

 \bigoplus_{JES} negligible

175.0

Summary and outlook

- Proof of principle for energy-peak based templates for decay length (and possibly related observables)
- Tiny dependence on top quark production kinematics
- Manageable dependence on B hadron "PDG listing"
- Motivates pushing hadronization, fragmentation, showering to next level to get firmer predictions on D_i
- Color reconnections and recoil effects worth being explored

10.36

10.34

Summary and outlook

- Proof of principle for energy-peak based templates for decay length (and possibly related observables)
- Tiny dependence on top quark production kinematics
- Manageable dependence on B hadron "PDG listing"
- Motivates pushing hadronization, fragmentation, showering to next level to get firmer predictions on D_i
- Color reconnections and recoil effects worth being explored

10.36

10.34

Thank you!

ncertainty on D;

Mellin Moment	$\delta \langle z^n \rangle / \langle z^n \rangle$	$\delta m_t (10\% \text{ reweighting})$	Sensitivity
$\langle z \rangle$	2.8~%		3.5
$\langle z^2 \rangle$	5.2~%	$1.7 \mathrm{GeV}$	2.5
$\langle z^3 \rangle$	7.2~%		1.4

Table 5. For each of the first three Mellin moments of the D_i we report: the difference between the default Pythia tune (Tune:pp 14) and the ATLAS tune (Tune:pp 21); the effect on the extracted m_t stemming from a 10% contamination of the ATLAS tune into the Monash tune; the sensitivity of the extracted m_t to each Mellin moment.

Mellin Moment	$\delta \langle z^n \rangle / \langle z^n \rangle$	$\delta m_t^{(171\to176)}$	Sensitivity
$\langle z angle$	0.53~%		3.8
$\langle z^2 \rangle$	0.91~%	$3.5~{ m GeV}$	2.2
$\langle z^3 \rangle$	1.23~%		1.6

For each of the first three Mellin Moments of the fragmentation function we report: Table 6. their change due to varying the m_t value that labels the D_i extracted from the Monte Carlo truth from 171 GeV to 176 GeV; the change on the extracted m_t due to using the D_i extracted from the Monte Carlo truth for $m_t = 176$ GeV on the data sample for $m_t = 171$ GeV; the sensitivity of the extracted m_t to each Mellin moment.

Impact of uncertainty on D_i

+----+ mt = 173 GeV<z> | <z^2> | <z^3> +----+ 0.7072 | 0.5397 | 0.4295 tune14 tune14 recoil = off | 0.733 | 0.5746 | 0.467 0.7306 | 0.5722 | 0.4654 tune21 tune21 recoil = off | 0.7504 | 0.5992 | 0.4945 percent change in moments relative to default tunes +----+ mt = 173 GeV | <z> | <z^2> | <z^3> tune14 0.0 0.0 0.0 tune14 recoil = off | 3.6552 | 6.4727 | 8.714 tune21 3.3149 | 6.0314 | 8.3377 tune21 recoil = off | 6.1172 | 11.0311 | 15.1201 +----+

Impact of measurement uncertainty on the template definition

ν	0.3
V_b range	$[40, 450] {\rm GeV}$
E_B	$7 \mathrm{GeV} < E_B < E_b$
L_B	[0,20] mm

Impact of experimental length uncertainty

NNLO hadrons

FULLY INCLUSIVE

PEAK STABILITY

Figure 10. The normalized E(B) distribution for fixed scale (3.2). Shown are the 15 point scale variation bands for LO, NLO and NNLO as well as the NPFF r.m.s. uncertainty band. The plot to the right is like the one to the left but with LO top decay.

m_t	LO	NLO	NNLO
$171.5 \mathrm{GeV}$	$37.553 \ (\pm 0.106) \ (^{+0.050}_{-0.061})$	$40.994 \ (\pm 0.147) \ (^{+1.178}_{-0.710})$	$42.957 (\pm 0.329)$
$172.5~{\rm GeV}$	$37.816\ (\pm 0.109)\ (^{+0.051}_{-0.062})$	$41.277 \ (\pm 0.158) \ (^{+1.196}_{-0.717})$	$43.263 (\pm 0.332)$
$173.5~{\rm GeV}$	$38.093 \ (\pm 0.113) \ (^{+0.051}_{-0.061})$	$41.657 \ (\pm 0.168) \ (^{+1.250}_{-0.745})$	$43.528 \ (\pm 0.222)$
Lin. fit	LO	NLO	NNLO
a =	$0.270~(\pm 0.004)$	$0.329~(\pm 0.028)$	$0.284 \ (\pm 0.02)$
b =	$-8.755 \ (\pm 0.708) \ { m GeV}$	$-15.429 \ (\pm 4.820) \ \mathrm{GeV}$	$-5.666 (\pm 1.816)$

Table 2. Values of $E_{\max}(B)$ for the absolute differential cross section with full top quark decay at LO, NLO and NNLO and for three different values of m_t . Positions are fit using eq. (3.9) and 5 GeV bins. Also given are the parameters of the linear fit eq. (3.7) at LO, NLO and NNLO.

m_t	LO	NLO	NNLO
$171.5 \mathrm{GeV}$	$37.553 \ (\pm 0.106) \ (^{+0.050}_{-0.061})$	$36.744 \ (\pm 0.169) \ (^{+0.213}_{-0.313})$	$36.737~(\pm 0.311)$
$172.5~{\rm GeV}$	$37.816\ (\pm 0.109)\ (^{+0.051}_{-0.062})$	$36.981 \ (\pm 0.182) \ (^{+0.223}_{-0.330})$	$37.010 \ (\pm 0.227)$
$173.5~{\rm GeV}$	$38.093~(\pm 0.113)~(^{+0.051}_{-0.061})$	$37.319\ (\pm 0.193)\ (^{+0.206}_{-0.296})$	$37.292~(\pm 0.255)$
Lin. fit	LO	NLO	NNLO
a =	$0.270~(\pm 0.004)$	$0.286~(\pm 0.029)$	$0.278 (\pm 0.00)$
b =	$-8.755~(\pm 0.708)~{ m GeV}$	$-12.237 \ (\pm 4.962) \ {\rm GeV}$	$-10.913 (\pm 0.556)$

Table 3. As in table 2 but for LO top quark decay.

NNLO hadrons

EXCLUSIVE

STABILITY ON QCD PERTURBATIONS

B hadron energy peak get the hadron energy entirely from tracks

Exclusive Decay (Fully reconstructible with tracks)

 $B_s^0 \to J/\psi \phi \to \mu^- \mu^+ K^+ K^-$ 1106.4048 $B^0 \rightarrow J/\psi K_S^0 \rightarrow \mu^- \mu^+ \pi^+ \pi^-$ 1104.2892 $B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$ 1101.0131 1309.6920 $\Lambda_b \to J/\psi \Lambda \to \mu^+ \mu^- p \pi^-$ 1205.0594

 $B^{0} \xrightarrow{3 \cdot 10^{-3}} D^{-} \pi^{+} \xrightarrow{10^{-2}} K^{0}_{S} \pi^{-} \pi^{+} \qquad B$ $B^{0} \xrightarrow{0} D^{-} \pi^{+} \xrightarrow{0} K^{-} \pi^{+} \pi^{-} \pi^{+} \qquad B$ $B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[3\cdot10^{-2}]{} K^{0}_{S}\pi^{+}\pi^{-}\pi^{+} \qquad B$ $B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[3\cdot10^{-2}]{} K^{0}_{S}\pi^{+}\pi^{-}\pi^{+} \qquad B$

J/psi but no need to require leptonic W decay

D modes

Pythia8 parameter	range	Monash d
TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
TIMESHOWER:RECOILTOCOLOURED	on and off	on
5:м0	3.8-5.8 GeV	4.8 Ge
StringZ:rFactB	0.713-0.813	0.855
StringZ:aNonstandardB	0.54-0.82	0.68
StringZ:bNonstandardB	0.78-1.18	0.98
	Pythia8 parameter TimeShower:pTmin TimeShower:alphaSvalue TimeShower:recoilToColoured 5:m0 StringZ:rFactB StringZ:aNonstandardB StringZ:bNonstandardB	Pythia8 parameterrangeTIMEShower:PTMIN0.25-1.00 GeVTIMEShower:ALPHASVALUE0.1092 - 0.1638TIMEShower:RecoilToColouredon and off5:M03.8-5.8 GeVStringZ:rFactB0.713-0.813StringZ:aNonstandardB0.54-0.82StringZ:bNonstandardB0.78-1.18

рТтin

	Рутніа8 parameter	range	Monash d
$p_{T,\min}$	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
$lpha_{s,{ m FSR}}$	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
recoil	TIMESHOWER: RECOIL TO COLOURED	on and off	on
b quark mass	5:м0	3.8-5.8 GeV	4.8 Ge
Bowler's r_B	StringZ:rFactB	0.713-0.813	0.855
string model a	StringZ:aNonstandardB	0.54-0.82	0.68
string model b	StringZ:bNonstandardB	0.78-1.18	0.98

рТтin

as

p
α
1
b qu
Bow
string
$\operatorname{strin}_{\xi}$

	Рутніа8 parameter	range	Monash d
T, \min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
ler's r_B	StringZ:rFactB	0.713-0.813	0.855
; model a	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

рТтin

as

p α r b qua Bow string string

	Рутніа8 parameter	range	Monash d
T, \min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
ler's r_B	StringZ:rFactB	0.713-0.813	0.855
; model a	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

	Рутніа8 parameter	range	Monash d
T, \min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
ler's r_B	StringZ:rFactB	0.713-0.813	0.855
; model a	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

	Рутніа8 parameter	range	Monash d
T, \min	TIMESHOWER:PTMIN	0.25-1.00 GeV	0.5
s, FSR	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.136
ecoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
ark mass	5:м0	3.8-5.8 GeV	4.8 Ge
ler's r_B	StringZ:rFactB	0.713-0.813	0.855
; model a	StringZ:aNonstandardB	0.54-0.82	0.68
g model <i>b</i>	StringZ:bNonstandardB	0.78-1.18	0.98

EVENT GENERATORS HERWIG PARAMETERS

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

ault 75 95

VXCUT

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

ault 1 2 .35 .18 0 .48 .1 .75 .95

VXCUT

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

ault 1 2 .35 .18 0 .48 .1 .75 .95

EVENT GENERATORS HERWIG PARAMETERS

VXCUT

B direction

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

ault 75 95

MASS OF DAUGHTER CLUSTERS UNIFORMLY DISTRIBUTED IN MPSPLT

EVENT GENERATORS

	parameter	range	def
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	
Power in maximum cluster mass	CLPOW	1.8 - 2.2	
Maximum cluster mass	CLMAX	3.0 - 3.7	3.
$CMW \Lambda_{QCD}$	QCDLAM	0.16 - 2	0.
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	
Quark shower cutoff	VQCUT	0.4 - 0.55	0.
Gluon shower cutoff	VGCUT	0.05 - 0.15	0
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.

ault 75 95