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…) 
• new physics entering the top quark sample
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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and we use it throughout the analysis. Our choices for the observables are
reported in Table 4. Example spectra in observables that are potentially
interesting for the calibration of the Monte Carlo parameters are shown
in Figure 3, in which the thick part of the histograms corresponds to the
FWHM range.

4.1 Dependence on the top-quark mass

A preliminary step for the Monte Carlo tuning is the assessment of the
dependence of the calibration observables on the top-quark mass. Ideally, a
calibration observable should have no dependence on mt, so that it could be
used to constrain the Monte Carlo parameters without any concern about
a potential bias in the mt measurement. In practice, all quantities have
some sensitivity to mt, so the only viable approach is using observables with
minimal sensitivities to the top-quark mass. In this section we study the
dependence on mt of the calibration observables, so that one can restrict
the analysis to a specific set of quantities, clearly aimed at calibration.

We determine the dependence on mt of the first Mellin moments, ob-
tained from 21 mt values in-between 163 GeV and 183 GeV, by fitting a
straight line. We then compute the sensitivities defined in eq. (2) and re-
peat this procedure for the several Monte Carlo settings needed to explore
the dependence on the parameters in Table 1. The Mellin moments and
the straight-line fits for some illustrative parametrizations are presented in
Figure 4. Once we have collected the values of the sensitivity to mt for all
the variations of the Monte Carlo parameters, we calculate the mean value
and standard deviation for each observable. We highlight the fact that
the standard deviation, arising from the discrepancies in the straight-line
fits to data with different parametrizations, is to be read as a measure of
the sensitivity of our result to the Monte Carlo setting employed in the
computation.

The results are reported in Table 4; a few comments are in order. First
of all we remark that for our purposes it is sufficient to present the broad
picture of the sensitivity of the observables to showering and hadronization
parameters, and therefore we can content ourself with one or two digits of
accuracy in the determination of sensitivity parameters. This accuracy will
be more than sufficient to draw informative conclusions. Concerning the
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Figure 3: Example spectra for ⇢(r), �B(Ejb + Ej̄b), EB/E`, �R(BB) �

�R(jb̄jb), pT,B/pT,jb , and mBB̄/mjb j̄b for mt = 174 GeV.
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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and we use it throughout the analysis. Our choices for the observables are
reported in Table 4. Example spectra in observables that are potentially
interesting for the calibration of the Monte Carlo parameters are shown
in Figure 3, in which the thick part of the histograms corresponds to the
FWHM range.

4.1 Dependence on the top-quark mass

A preliminary step for the Monte Carlo tuning is the assessment of the
dependence of the calibration observables on the top-quark mass. Ideally, a
calibration observable should have no dependence on mt, so that it could be
used to constrain the Monte Carlo parameters without any concern about
a potential bias in the mt measurement. In practice, all quantities have
some sensitivity to mt, so the only viable approach is using observables with
minimal sensitivities to the top-quark mass. In this section we study the
dependence on mt of the calibration observables, so that one can restrict
the analysis to a specific set of quantities, clearly aimed at calibration.

We determine the dependence on mt of the first Mellin moments, ob-
tained from 21 mt values in-between 163 GeV and 183 GeV, by fitting a
straight line. We then compute the sensitivities defined in eq. (2) and re-
peat this procedure for the several Monte Carlo settings needed to explore
the dependence on the parameters in Table 1. The Mellin moments and
the straight-line fits for some illustrative parametrizations are presented in
Figure 4. Once we have collected the values of the sensitivity to mt for all
the variations of the Monte Carlo parameters, we calculate the mean value
and standard deviation for each observable. We highlight the fact that
the standard deviation, arising from the discrepancies in the straight-line
fits to data with different parametrizations, is to be read as a measure of
the sensitivity of our result to the Monte Carlo setting employed in the
computation.

The results are reported in Table 4; a few comments are in order. First
of all we remark that for our purposes it is sufficient to present the broad
picture of the sensitivity of the observables to showering and hadronization
parameters, and therefore we can content ourself with one or two digits of
accuracy in the determination of sensitivity parameters. This accuracy will
be more than sufficient to draw informative conclusions. Concerning the
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Figure 3: Example spectra for ⇢(r), �B(Ejb + Ej̄b), EB/E`, �R(BB) �

�R(jb̄jb), pT,B/pT,jb , and mBB̄/mjb j̄b for mt = 174 GeV.
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O Range �(MO)
mt

�(mt)
✓

↵s,FSR mb pT,min a b rB recoil
EB 28-110 0.92(5) -0.52(2) -0.21(3) 0.057(4) -0.02(2) 0.06(2) -0.10(5) -0.022(5)
pT,B 24-72 0.92(3) -0.54(2) -0.21(2) 0.056(4) -0.03(2) 0.07(1) -0.09(4) -0.023(2)

mB`,true 47-125 1.30(2) -0.241(8) -0.072(6) 0.022(2) -0.007(5) 0.023(6) -0.02(2) -0.008(2)
mB`+,min 30-115 1.16(2) -0.282(5) -0.078(7) 0.024(2) -0.011(7) 0.021(7) -0.04(2) -0.010(1)
EB + EB 83-244 0.92(4) -0.50(2) -0.21(2) 0.056(6) -0.02(2) 0.07(3) -0.08(6) -0.020(4)
mBB`` 172-329 0.96(2) -0.25(1) -0.10(1) 0.028(3) -0.01(1) 0.026(7) -0.03(3) -0.008(2)

m(mET)
T2,B`,true 73-148 0.95(3) -0.27(1) -0.09(1) 0.029(3) -0.009(9) 0.03(1) -0.03(4) -0.010(3)

m(mET)
T2,B`,min 73-148 0.95(3) -0.27(1) -0.09(1) 0.029(3) -0.009(9) 0.03(1) -0.03(4) -0.010(3)

m(`⌫)
T2 0.5-80 -0.118(7) -0.03(2) 0.00(2) 0.002(8) 0.00(2) -0.01(2) 0.00(7) 0.004(5)

m`` 37.5-145 0.40(5) -0.03(5) -0.01(4) 0.00(1) 0.01(5) 0.01(4) 0.0(1) 0.00(1)
E` + E` 75-230 0.54(5) -0.03(3) 0.00(3) 0.003(9) 0.01(3) -0.00(2) 0.06(9) 0.003(8)

E` 23-100 0.48(4) -0.02(5) 0.00(5) 0.004(9) 0.01(4) -0.01(4) -0.06(9) 0.003(8)

Table 7: Columns under �(mt)
✓ show the sensitivity to shower and hadronization PYTHIA parameters of the top quark mass extracted from the first Mellin moment

of mass-sensitive observables. The column �(MO)
mt reports the sensitivity of the first Mellin moment to the top quark mass. The range extremal values reported in the

second column are all in GeV. These ranges correspond to the FWHM for mt = 174GeV, for other masses we have used the corresponding FWHM.

O �(MO)
mt

�(mt)
✓

PSPLT QCDLAM CLPOW CLSMR(2) CLMAX RMASS(5) RMASS(13) VGCUT VQCUT
mB`,true 0.52 0.036(4) -0.008(2) -0.007(5) 0.002(3) -0.007(4) 0.058(1) 0.06(5) 0.003(1) -0.003(3)

pT,B 0.47 0.072(1) -0.03(9) -0.02(7) 0.0035(5) -0.03(5) 0.11(9) 0.12(5) 0.0066(2) -0.006(5)
EB 0.43 0.069(7) -0.026(7) -0.017(5) 0.0038(9) -0.01(2) 0.12(1) 0.12(2) 0.006(2) -0.007(5)
E` 0.13 0.0005(5) -0.04(3) 0.04(2) -0.0002(2) -0.004(4) 0.008(3) 0.008(2) -0.002(5) 0.008(2)

Table 8: As in Table 7, but in terms of the HERWIG 6 shower and hadronization parameters. Ranges are those reported in Table 7 for all values of mt.

23



Corcella, RF, Kim - 1712.05801

CI
RC

A 
20

17
Beyond JES w/ hadrons

Monte Carlo calibration targets

Pythia8

Herwig6
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• αs  needed at 1% 
• mb needed at 3% 
• all the rest needed at 10% 

• ΛQCD ⇒ αs  needed at 1% 

• mb,g needed at 1% 
• cluster mass spectrum (PSPLT, CLPOW, 

CLMAX) needed at 10% 
• all the rest needed at “100%” 

Pythia8
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Herwig6
• ΛQCD ⇒ αs  needed at 3% 

• mb,g needed at 2% 

• cluster mass spectrum (PSPLT, CLPOW, 
CLMAX) needed at 20% 

• all the rest needed at “100%” 

• αs  needed at 10% 
• mb needed at 10% 
• rB needed at 10% 
• all the rest needed at “100%” 

















































































Lxy decay length 
• B-hadron life-time - Lxy hep-ex/0501043

larger top mass ⇒  
⇒ large B hadron momentum ⇒ 

 ⇒ larger lab-frame life-time

CMS-PAS-TOP-12-030

mt = 173.5 ± 1.5stat ± 1.3syst ± 2.6pT (t)GeV 

dependence on the dynamics (e.g. production of top at LHC)
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Lxy decay length 
• B-hadron life-time - Lxy hep-ex/0501043

larger top mass ⇒  
⇒ large B hadron momentum ⇒ 

 ⇒ larger lab-frame life-time

larger top momentum ⇒  
⇒ large B hadron momentum ⇒ 

 ⇒ larger lab-frame life-time

CMS-PAS-TOP-12-030

mt = 173.5 ± 1.5stat ± 1.3syst ± 2.6pT (t)GeV 
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Figure 2: Distribution of the leading top quark (left) and of tt quantities (right) as obtained from
the kinematic reconstruction. The top row shows the transverse momenta, and the bottom row
shows the rapidities. The normalisation of the Z/g⇤+jets background is determined from data
(cf. Section 3).

dependence on the dynamics (e.g. production of top at LHC)

CI
RC

A 
20

15



Summary and outlook (back then)
• Jet-level  well under control from theory, NLO scale 

variation well under GeV on , JES uncertainty as large as 
NLO scale variation

• Hadron-level  can can offer JES-free measurement via 

either full reconstruction of a B-hadron energy in tracker or 
length measurement

• Scale(s) variation(s) of FF point towards   expansion up to 
NN(N)LO, demanding MC parameters sensitivity. Issues 
probably common to all hadron-based methods.
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Summary and outlook (back then)
• full B-hadron reconstruction in tracker not pursued yet
• length-based  measurement was identified as a bearing 

some potentially interesting remnant of the energy peak 
invariance, but no concrete technical solution to dig out 
this remnant

• other interesting applications identified for  and 
possibly cosmic rays physics

mt

mW
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F O R  T H E  C R I T I C A L  A S P E C T S  O F  T H I S  M E A S U R E M E N TS E T  TA R G E T S

Goal of the present work

• Propose a description of the hadron observable decay 
length rooted in the key elements of the successful jet-
level method.

• Describe a template-fitting procedure that leverages the 
good understanding at the quark and jet-level, and allows 
to test the moving parts (e.g. hadronizaton, other MC 
aspects)



F O R  T H E  C R I T I C A L  A S P E C T S  O F  T H I S  M E A S U R E M E N TS E T  TA R G E T S

Goal of the present work
• Will not identify a set of tools/calculations that are best 

*today* to carry out the measurement 
• Will try to identify the weak points of our chain of tools/

computations and set targets for the improvements we 
need to get (likely similar to other hadron-based methods)

• Will show that starting from energy-peak considerations 
the  extraction from decay length can withstand 
changes in the top quark production kinematics, e.g. 
changes of .

mt

pT,t
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ation

Top production Top decay DecaysProton PDF Adjustments, 
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where the functions, variables, and parameters in this expression play the following roles:

G
fit
�
LB;E

rest
b , w

�
! fitting function for the decay length (LB) distribution

best-fit value of parameter Erest
b !

m
2
t �M

2
W +m

2
b

2 mt

⌧
rest
B ! mean decay lifetime of B-hadron in its rest frame

parameter w ! width of fitting function

parameter ⌫ ! tails weight of fitting function

i ! B-hadron species

Di

✓
EBi

Eb
;Eb

◆
! bottom quark fragmentation function for species i

fi ! relative proportion of species i

N(w) ! normalization factor

Concerning hadronization, we note that the relative fractions fi, in principle, depend

on the kinematics of the bottom quark, see e.g. [27, 28, 30, 31] for the pT and ⌘ depen-

dence of ⇤b and Bs production, and therefore on the production mechanism, including a

subtle dependence on the color environment, which raises some doubt about the universal

applicability of results from e
+
e
� machines to hadron machines at the level of precision

that our method may require.

Also the fragmentation functions Di

⇣
EBi
Eb

;Eb

⌘
are a crucial input and are currently

not well measured at hadron colliders. For our study we assume that these quantities are

perfectly known. This helps us to disentangle the role of uncertainty in Di from other

uncertainties in the method. To mimic this situation we exploit the Monte Carlo truth

from Pythia8 by looking at the b quark energy, and the energy, decay length, as well as

the identity of each specific B hadron species generated in each event. The initial energy

of the b quark and the energy of the B-hadron are used to create a fragmentation function

Di(
EBi
Eb

;Eb), as introduced in Eq. (2.13), for each hadron species Bi. The particle IDs are

used to identify hadron species and thereby determine the hadron fractions fi to be used

in our template computation. We stress that extracting Di from Pythia is a practical trick

to carry out our exercise. We are not necessarily endorsing the use of Pythia to obtain Di

in a real measurement, as a dedicated study would be needed involving top decay beyond

leading order suitably matched to parton shower and precise fragmentation functions.

We stress that by measuring this fragmentation function from Pythia itself and plug-

ging it into our double integral, we essentially remove the unknowns due to fragmentation

– 13 –

{



Our template
G

fit
�
LB;E

rest
b , w, ⌫

�
=

Z Eb

EB,min

dEB

Z Eb,max

Eb,min

dEb
1

N(w)
exp


� w

✓
Eb

Erest
b

+
E

rest
b

Eb

◆⌫ �
⇥

X

i

Di

✓
EBi

Eb
;Eb

◆
fimBi

c⌧ restBi

q
E2

B �m2
Bi

exp

0

@�
LBmBi

c⌧ restBi

q
E2

B �m2
Bi

1

A ,

(3.7)
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Our selection
Ref. [23] Optimal choice for our analysis

`+ jets

e pT > 30 GeV, ⌘ < 2.4 pT > 25 GeV, ⌘ < 2.4

µ pT > 26 GeV, ⌘ < 2.1 pT > 25 GeV, ⌘ < 2.1

j Nj � 4, pT > 30 GeV, ⌘ < 2.5 Nj � 4, pT > 25 GeV, ⌘ < 2.5

2`+ jets

e, µ pT > 20 GeV, ⌘ < 2.4 pT > 25 GeV, ⌘ < 2.4

SF M`` > 20 GeV, |M`` �mZ | > 15 GeV M`` > 20 GeV, |M`` �mZ | > 15 GeV

OF - -

j pT > 30 GeV, ⌘ < 2.5 pT > 25 GeV, ⌘ < 2.5

E
miss
T > 40 GeV E

miss
T > 40 GeV

Table 1. Baseline selection of the events used in our analysis and an optimized choice that we use
to minimize bias of the measured top quark mass.

mention this possibility.] –JI) Could you please write the description of CDF’s selec-

tion criteria since you’re likely the most qualified to explain it? For same-flavor dilepton

events, as a baseline, we require exactly two leptons with pT > 25 GeV and |⌘| < 2.4, at

least 2 jets with pT > 25 GeV and |⌘| < 2.5, Emiss
T > 40 GeV, and for the invariant mass of

the two leptons, M``, we require |M`` �mZ | > 15 GeV to remove backgrounds containing

a real Z boson and M`` > 20 GeV to remove backgrounds from photon conversions and

QCD resonances. In Section 4 we show the e↵ect of variations of these optimal selection

criteria.10 For comparison, the CMS selection for a determination of mt using a B-hadron

decay length measurement are reported in Table 1, together with a summary of our selec-

tion criteria. Our selection is identical for the ⌘ ranges, but di↵ers on the pT requirements.

As detailed later, our analysis prefers to have equal pT thresholds for all final states, hence

we softened the jet pT and hardened the lepton pT requirements to a medium value of

25 GeV, which should be attainable for experiments at the LHC and HL-LHC.

The events that have passed our selection cuts are fed into Pythia 8.2 [24] for show-

ering and hadronization. The B-hadron decay lengths are then fitted to the double convo-

lution function to extract the b quark energy peak as per Eq. (3.7).

3.3 Extracting energy peak from B-hadron decay lengths

For a realistic discussion we need to take into account some crucial di↵erences between b-

jets and B-hadrons. The most obvious being that a bottom quark can hadronize into one of

the many B hadron species, with di↵erent masses and mean rest-frame lifetimes. Therefore,

constructing a fitting function for B-hadron energy or length spectrum is unavoidably more

involved than what we sketched in Eq. (2.13). The probability of decay into a particular

B hadron species needs to be taken into account, thus we introduce fractions fi for the

production yield of each hadron Bi, whose mass, energy and lifetime needs to be correctly

tracked in our formula. This leads to the following more appropriate fitting function for

the spectra:

10The proposed cuts we show are similar to those used by experiments to eliminate background events.

We expect our minimal changes not to a↵ect background estimates on identifying tt̄ events.
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Our fit

best

⌫ 0.3

Eb range [40,450] GeV

EB 7GeV < EB < Eb

LB [0,20] mm

Table 2. Summary of the parameters that we fixed to compute our template Eq. (3.7).

Ideally, we want to have a precise measurement, that stems from a narrow �
2, with no

bias from our template fits. In other words, the minimum of the �
2 should coincide with

the input top quark mass. We estimate the bias by doing pseudo-experiments for various

combinations of the hyper-parameters and we pick the values which lead to the smallest

bias. These optimal values are collected in Table 2. The stability of the estimated bias and

details on the whole procedure are given in Section 4 together with our main result.

4 Results

4.1 Measurement of the top quark mass

The measurement of the top quark mass starts from the observed decay length spectrum,

inclusive of all species of B-hadrons that are produced at the LHC in tt̄ events. A prediction

from this observable from Pythia 8.2 is shown in Figure 2 for mt = 173.0 GeV. Using our

template Eq. (3.7) we can fit the best value for mt with a simple �
2 minimization and

find mt = 172.50± 0.35 on this particular spectrum. An example �
2 shape is displayed in

Figure 3 for illustration.

The result shown in Figure 2 is just one instance of a representative input mass;

mt, input = 173.0 GeV. In the following, we present the results obtained for various other

masses and we quote the performance of our method by taking the average of the un-

certainties obtained. In particular, we apply our template fitting procedure to top quark

masses over the range 170 GeV  mt, input  176 GeV with the hyper-parameters fixed

to the values in Table 2 to obtain the following expression for the uncertainty, which is

discussed in detail below:

�m
(EB , peak)
t =

0.5 GeVq
L/100 fb�1

(stat.)� 0.5 GeV ·

 
0.1%
�Di
Di

!
� 0.3 GeV ·

 
5%
�fi
fi

!
. (4.1)

Given the need to compute templates, our method incurs a risk of returning a value of

the top quark mass that has a small uncertainty, due to a sharp �
2 profile, but is somewhat

shifted with respect to the input value. As the event generators currently available in

QCD are not fully up to the task of dealing with the 10�3 precision that a top quark

mass measurement currently demands, we take the position that a robust method for the

measurement of the top quark mass should be designed with the goal of a small bias as well

as a small error bar. In fact, lacking a reliable event generator for the precision we need,

this approach has the potential to avoid a large bias when applied to real-world data, which
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Figure 2. Pythia 8.2 decay length spectrum for input mt = 173 GeV, normalized for 600/fb
at LHC 14 TeV summing fully leptonic and semileptonic tt̄ decays (blue). Result of the fit not
corrected for the bias (orange).

Figure 3. �2 profile in the vicinity of the best-fit parameters in the space (Erest
b , w) (left) and for

fixed w as a function of Erest
b (right).

will certainly di↵er from the Monte Carlo data on which the bias and the error bar have

been optimized. When we set all the parameters to their optimum values, we obtain an

average bias in the mt measurement that is �0.18±0.12 GeV, which is below the expected

systematic uncertainty. It is also not very sensitive to the choice of hyper-parameters, as

detailed below Section 4.2, thus we consider our method to have negligible bias.

With an integrated luminosity of 100 fb�1, we find that at 14 TeV LHC the expected

statistical uncertainty for a �
2 fit of our templates, assuming a total production cross-

section for tt̄ at 985 pb [41], is 500 MeV. Thus we expect this measurement to be already

competitive with regard to the statistical uncertainty over other historically more frequently

pursued methods in LHC Run 3. We further expect that the statistical uncertainty will go

down to about 100 MeV at HL-LHC for 3000 fb�1. Hence, a thorough discussion of the

systematic uncertainties associated with this method is now in order.
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Uncertainties 



Uncertainty in the definition of the template

Figure 4. Bias as a function of the limits on the b-quark energy range in the Eb integral of Eq. (3.7).
Subplots are titled by the common pT cut on leptons and jets used for the selection of events.

Figure 5. Bias as a function of the lower and higher limit on the b-quark energy range on which
we perform the Eb integral in Eq. (3.7). The lower (higher) limit is fixed at 450 GeV (40 GeV) in
the right (left) plot.

4.2 Uncertainty from template definition

The definition of our template Eq. (3.7) requires that some parameters be fixed and a phase-

space region be specified in which we want to carry out the measurement as summarized for

our analysis in Tables 1 and 2. As noted above, the goal for these choices was a minimization

of both the bias and the error in our measurement. Variations of these choices need to be

explored to demonstrate the stability of the procedure. It is important to verify that it
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• range of  can bias the extracted top quark mass 

•  cut for a  and   can bias the extracted top quark 
mass

Eb−jet

pT j ℓ

• getting wrong   at 1% is reflected in 80 MeV shift in top 
quark mass

Eb



Uncertainty in the definition of the template

• Hadrons masses and lifetimes need to be know at least 
as precisely as the target for . Current knowledge is 
sufficient for  below 500 MeV  

• As hadron masses and lifetimes are not too different 
among B-hadron species, the required knowledge of  
can be  times worse than the target for  . 
Current knowledge might be fine, but better get rid of 

 and  if possible.

mt
δmt

fi
O(10) mt

e+e− pp̄

Hadron Mass (MeV) [25] Lifetime (10�12 s) [27] Fraction

B
± 5279.34 ± 0.12 1.638 ± 0.004 42.9 %

B
0 5279.65 ± 0.12 1.519 ± 0.004 42.9 %

B
0
s 5366.88 ± 0.14 1.516 ± 0.006 9.5 %

⇤0
b 5619.69 ± 0.17 1.471 ± 0.009 3.6 %

Table 3. Properties of the four most prominent species of B hadrons from b-quark hadronization.
Production fractions are taken from Pythia 8.2 Monash tune default.

does not hinge on a too particular or peculiar a choice of the phase-space region or a too

narrow definition of the template parameters. In fact, a mismatch between the phase-space

used to compute the templates and the phase-space imposed on the data through event

selection criteria may be reflected in a mismatch between the extracted top quark mass

and its true value.

We quantify this possible mismatch with a study of the impact of variations of the

pT cut on each particle and of the Eb range in our template definition. For this study, we

fix the choice of the length fitting range LB 2 [0, 20] mm as per our optimal measurement

strategy. We find that using unequal pT cuts for di↵erent particles tends to introduce larger

biases, hence in the following, we consider a common value for the pT cut of both leptons

and jets. We vary the common pT cut on jets and leptons in the event selection criteria and

the limits on bottom quark energy and we obtain the bias (in GeV) on the top quark mass

shown in Figure 4. We found that the choice of the LB fitting range is not very important

as long as the tail of the spectrum is excluded. All in all, an analysis can be carried out

with a common pT threshold at 25 GeV in the energy range Eb 2 [40, 450] GeV. As shown

broadly in Figure 4 and detailed in Figure 5, a variation of the highest energy considered

in the template would have a very mild e↵ect on the bias. Variations of the lowest energy

considered in the template may have more impact, however, the bias is around 80MeV
( �E

E /10�2)
,

which is reasonable to neglect in view of the expected �E/E performance for b-jets in Run3

and HL-LHC experiments.

4.3 Hadronization and fragmentation uncertainties

In our analysis, we use multiple B-hadron species, which di↵er in mass, mean decay length,

and production rate. The central values that we used for these quantities are given in

Table 3. To estimate the sensitivity of the result to these inputs in the ansatz, we vary

them one by one and see how the prediction for the extracted top quark mass shifts on a

fixed data set. Clearly, future measurements will be needed to better fix these quantities,

especially if they can be measured directly at the LHC in phase-space regions similar to b

quarks from tt̄ production.

Table 4 summarizes how the extracted top quark mass changes upon variations of B

hadrons properties. We quote a sensitivity

�⇠Bj
=

�mt
mt

�⇠Bj

⇠Bj

(4.2)

– 18 –

Figure 6. Fragmentation function obtained from Pythia 8 using a ATLAS tune (Tune:pp 21) and
the default tune (Tune:pp 14) for mt = 171 GeV.

Figure 7. E↵ect on the extracted mt from the change of the fragmentation function as parame-
terized by changing mt in the data used to the MC truth on which the fragmentation functions is
measured. The mt used to measure the fragmentation is on the horizontal axis; the measurement
is shown as a black line for each subplot corresponding to a correct mt used to generate data. The
blue line is shown as a reference, as it corresponds to an unbiased measurement.

are not plagued by jet energy scale uncertainty. The largest uncertainty in the latest

CMS analysis is due to modeling of the top quark pT distribution [11], which shows how

the measurement is in general sensitive to the production mechanism of the top quarks.

Our method, if applied on fully inclusive data samples and with a perfect ansatz for the

shape of the b quark energy distribution, would be independent of top quark production

mechanism, hence we expect our results to have little sensitivity to top quark pT . In fact,
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mBi
, ΓBi

, fi
Di

Mellin Moment �hz
n
i/hz

n
i �m

171!176
t (10% reweighting) Sensitivity

hzi 2.8 % 3.5

hz
2
i 5.2 % 1.7 GeV 2.5

hz
3
i 7.2 % 1.4

Table 5. For each of the first three Mellin moments of the Di we report: the di↵erence between
the default Pythia tune (Tune:pp 14) and the ATLAS tune (Tune:pp 21); the e↵ect on the extracted
mt stemming from a 10% contamination of the ATLAS tune into the Monash tune; the sensitivity
of the extracted mt to each Mellin moment.

Mellin Moment �hz
n
i/hz

n
i �m

(171!176)
t Sensitivity

hzi 0.53 % 3.8

hz
2
i 0.91 % 3.5 GeV 2.2

hz
3
i 1.23 % 1.6

Table 6. For each of the first three Mellin Moments of the fragmentation function we report:
their change due to varying the mt value that labels the Di extracted from the Monte Carlo truth
from 171 GeV to 176 GeV; the change on the extracted mt due to using the Di extracted from the
Monte Carlo truth for mt = 176 GeV on the data sample for mt = 171 GeV; the sensitivity of the
extracted mt to each Mellin moment.

by a poor knowledge of Di.

Other analyses are possible to asses the sensitivity to Di. For instance, one could

try to use Di computed from experimental inputs using calculations to some order in

perturbation theory, e.g. following recent e↵orts to improve the knowledge of fragmentation

from first principles calculations [32–34, 42] which contain scale parameters, such as the

fragmentation and renormalization scales. As customary in pQCD studies the change on

Di that follows from the variation of these scales can be taken as a source of uncertainty

in the results, in our case on the templates Eq. (3.7) and the mt extraction to which they

give rise. We do not attempt this kind of analysis here, as it has more to do with the work

of extraction of Di. Furthermore, e↵ects on Di from this type of theory uncertainty can

be captured in any case by our statement on the Mellin moments described above.

It is important to remark that the present knowledge of Di, be it taken as a phe-

nomenological parameter tuned over data, e.g one of the Pythia tunes we have compared,

or from first principle computations applied on data, is far from the necessary precision to

not spoil a determination of mt that aims at a sub-GeV precision. As far as we know this

situation is common to other methods that explicitly use hadrons produced in tt̄ events,

see e.g. [11, 15, 35–37]. Therefore we urge for improvements on the determination of

fragmentation functions both on the experimental and theoretical side.

4.4 Uncertainties due to top quark production modeling

As mentioned earlier, CDF and CMS have already implemented a method to measure top

quark mass using B-hadron decay length [10, 11]. More specifically, they use the mean

transverse decay length of B-hadrons in top quark events. Like our method, their results
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Uncertainty in the production mechanism

Figure 8. Bottom plot is the result of Lxy method when reweighting the top quark pT distribution.
The green line/data points represent a ⇠ 0.5% change in the average top quark pT . The top plot
shows the results of our method with an inset included to show how small the shift is for the same
reweighting of top quark pT distribution.

5 Conclusions

The LHC and its High-Lumi upgrade face the formidable task of improving our understand-

ing of the Standard Model, which is already very well established. Nevertheless, there are

corners of the theory that are in urgent need of further study. The existence of multiple

proposals for a Higgs “factory”, or an even more versatile factory that can also produce top

quarks and electroweak bosons is a clear indication of the need to sharpen our knowledge of

the Standard Model with higher precision and potentially see discrepancies resulting from

new physics.

The top quark mass is a very special parameter in this respect because it involves

a number of perturbative and non-perturbative issues on the theory side, as well as a

variety of experimental challenges resulting from the relatively complex decay modes of

top quarks. At present, there are measurements that claim sub-GeV precision for the top

quark mass, but further scrutiny and caution are needed because of the myriad delicate

physical phenomena that a↵ect how the process is manifested in the data, how the complex

data are analyzed by the experimental teams, and finally how this is all translated into

a theoretical interpretation. In view of this, and the long period ahead of us before a

lepton collider will be ready to study top quarks, there is an urgent need to develop

new methods to determine the top quark mass at the LHC. These methods can also be

applied to advantage at future colliders. The hope is that, by getting a number of high-
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Summary of uncertainties

Figure 8. Bottom plot is the result of Lxy method when reweighting the top quark pT distribution.
The green line/data points represent a ⇠ 0.5% change in the average top quark pT . The top plot
shows the results of our method with an inset included to show how small the shift is for the same
reweighting of top quark pT distribution.
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top quarks. At present, there are measurements that claim sub-GeV precision for the top

quark mass, but further scrutiny and caution are needed because of the myriad delicate

physical phenomena that a↵ect how the process is manifested in the data, how the complex

data are analyzed by the experimental teams, and finally how this is all translated into

a theoretical interpretation. In view of this, and the long period ahead of us before a
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⊕pT,t
negligible

⊕mBi
negligible

⊕ΓBi
negligible

best

⌫ 0.3

Eb range [40,450] GeV

EB 7GeV < EB < Eb

LB [0,20] mm

Table 2. Summary of the parameters that we fixed to compute our template Eq. (3.7).

Ideally, we want to have a precise measurement, that stems from a narrow �
2, with no

bias from our template fits. In other words, the minimum of the �
2 should coincide with

the input top quark mass. We estimate the bias by doing pseudo-experiments for various

combinations of the hyper-parameters and we pick the values which lead to the smallest

bias. These optimal values are collected in Table 2. The stability of the estimated bias and

details on the whole procedure are given in Section 4 together with our main result.

4 Results

4.1 Measurement of the top quark mass

The measurement of the top quark mass starts from the observed decay length spectrum,

inclusive of all species of B-hadrons that are produced at the LHC in tt̄ events. A prediction

from this observable from Pythia 8.2 is shown in Figure 2 for mt = 173.0 GeV. Using our

template Eq. (3.7) we can fit the best value for mt with a simple �
2 minimization and

find mt = 172.50± 0.35 on this particular spectrum. An example �
2 shape is displayed in

Figure 3 for illustration.

The result shown in Figure 2 is just one instance of a representative input mass;

mt, input = 173.0 GeV. In the following, we present the results obtained for various other

masses and we quote the performance of our method by taking the average of the un-

certainties obtained. In particular, we apply our template fitting procedure to top quark

masses over the range 170 GeV  mt, input  176 GeV with the hyper-parameters fixed

to the values in Table 2 to obtain the following expression for the uncertainty, which is

discussed in detail below:

�m
(EB , peak)
t =

0.5 GeVq
L/100 fb�1

(stat.)� 0.5 GeV ·

 
0.1%
�Di
Di

!
� 0.3 GeV ·

 
5%
�fi
fi

!
. (4.1)

Given the need to compute templates, our method incurs a risk of returning a value of

the top quark mass that has a small uncertainty, due to a sharp �
2 profile, but is somewhat

shifted with respect to the input value. As the event generators currently available in

QCD are not fully up to the task of dealing with the 10�3 precision that a top quark

mass measurement currently demands, we take the position that a robust method for the

measurement of the top quark mass should be designed with the goal of a small bias as well

as a small error bar. In fact, lacking a reliable event generator for the precision we need,

this approach has the potential to avoid a large bias when applied to real-world data, which
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Figure 6. Fragmentation function obtained from Pythia 8 using a ATLAS tune (Tune:pp 21) and
the default tune (Tune:pp 14) for mt = 171 GeV.

Figure 7. E↵ect on the extracted mt from the change of the fragmentation function as parame-
terized by changing mt in the data used to the MC truth on which the fragmentation functions is
measured. The mt used to measure the fragmentation is on the horizontal axis; the measurement
is shown as a black line for each subplot corresponding to a correct mt used to generate data. The
blue line is shown as a reference, as it corresponds to an unbiased measurement.

are not plagued by jet energy scale uncertainty. The largest uncertainty in the latest

CMS analysis is due to modeling of the top quark pT distribution [11], which shows how

the measurement is in general sensitive to the production mechanism of the top quarks.

Our method, if applied on fully inclusive data samples and with a perfect ansatz for the

shape of the b quark energy distribution, would be independent of top quark production

mechanism, hence we expect our results to have little sensitivity to top quark pT . In fact,
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Summary and outlook 
• Proof of principle for energy-peak based templates for 

decay length ( and possibly related observables) 

• Tiny dependence on top quark production kinematics

• Manageable dependence on B hadron “PDG listing”

• Motivates pushing hadronization, fragmentation, 
showering to next level to get firmer predictions on 

• Color reconnections and recoil effects worth being 
explored 

Di
Figure 2. Pythia 8.2 decay length spectrum for input mt = 173 GeV, normalized for 600/fb
at LHC 14 TeV summing fully leptonic and semileptonic tt̄ decays (blue). Result of the fit not
corrected for the bias (orange).

Figure 3. �2 profile in the vicinity of the best-fit parameters in the space (Erest
b , w) (left) and for

fixed w as a function of Erest
b (right).

will certainly di↵er from the Monte Carlo data on which the bias and the error bar have

been optimized. When we set all the parameters to their optimum values, we obtain an

average bias in the mt measurement that is �0.18±0.12 GeV, which is below the expected

systematic uncertainty. It is also not very sensitive to the choice of hyper-parameters, as

detailed below Section 4.2, thus we consider our method to have negligible bias.

With an integrated luminosity of 100 fb�1, we find that at 14 TeV LHC the expected

statistical uncertainty for a �
2 fit of our templates, assuming a total production cross-

section for tt̄ at 985 pb [41], is 500 MeV. Thus we expect this measurement to be already

competitive with regard to the statistical uncertainty over other historically more frequently

pursued methods in LHC Run 3. We further expect that the statistical uncertainty will go

down to about 100 MeV at HL-LHC for 3000 fb�1. Hence, a thorough discussion of the

systematic uncertainties associated with this method is now in order.
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where the functions, variables, and parameters in this expression play the following roles:
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! fitting function for the decay length (LB) distribution
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b !

m
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t �M

2
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B ! mean decay lifetime of B-hadron in its rest frame

parameter w ! width of fitting function

parameter ⌫ ! tails weight of fitting function

i ! B-hadron species

Di

✓
EBi

Eb
;Eb

◆
! bottom quark fragmentation function for species i

fi ! relative proportion of species i

N(w) ! normalization factor

Concerning hadronization, we note that the relative fractions fi, in principle, depend

on the kinematics of the bottom quark, see e.g. [27, 28, 30, 31] for the pT and ⌘ depen-

dence of ⇤b and Bs production, and therefore on the production mechanism, including a

subtle dependence on the color environment, which raises some doubt about the universal

applicability of results from e
+
e
� machines to hadron machines at the level of precision

that our method may require.

Also the fragmentation functions Di

⇣
EBi
Eb

;Eb

⌘
are a crucial input and are currently

not well measured at hadron colliders. For our study we assume that these quantities are

perfectly known. This helps us to disentangle the role of uncertainty in Di from other

uncertainties in the method. To mimic this situation we exploit the Monte Carlo truth

from Pythia8 by looking at the b quark energy, and the energy, decay length, as well as

the identity of each specific B hadron species generated in each event. The initial energy

of the b quark and the energy of the B-hadron are used to create a fragmentation function

Di(
EBi
Eb

;Eb), as introduced in Eq. (2.13), for each hadron species Bi. The particle IDs are

used to identify hadron species and thereby determine the hadron fractions fi to be used

in our template computation. We stress that extracting Di from Pythia is a practical trick

to carry out our exercise. We are not necessarily endorsing the use of Pythia to obtain Di

in a real measurement, as a dedicated study would be needed involving top decay beyond

leading order suitably matched to parton shower and precise fragmentation functions.

We stress that by measuring this fragmentation function from Pythia itself and plug-

ging it into our double integral, we essentially remove the unknowns due to fragmentation

– 13 –



Summary and outlook 
• Proof of principle for energy-peak based templates for 

decay length ( and possibly related observables) 

• Tiny dependence on top quark production kinematics

• Manageable dependence on B hadron “PDG listing”

• Motivates pushing hadronization, fragmentation, 
showering to next level to get firmer predictions on 

• Color reconnections and recoil effects worth being 
explored 

Di
Figure 2. Pythia 8.2 decay length spectrum for input mt = 173 GeV, normalized for 600/fb
at LHC 14 TeV summing fully leptonic and semileptonic tt̄ decays (blue). Result of the fit not
corrected for the bias (orange).

Figure 3. �2 profile in the vicinity of the best-fit parameters in the space (Erest
b , w) (left) and for

fixed w as a function of Erest
b (right).

will certainly di↵er from the Monte Carlo data on which the bias and the error bar have

been optimized. When we set all the parameters to their optimum values, we obtain an

average bias in the mt measurement that is �0.18±0.12 GeV, which is below the expected

systematic uncertainty. It is also not very sensitive to the choice of hyper-parameters, as

detailed below Section 4.2, thus we consider our method to have negligible bias.

With an integrated luminosity of 100 fb�1, we find that at 14 TeV LHC the expected

statistical uncertainty for a �
2 fit of our templates, assuming a total production cross-

section for tt̄ at 985 pb [41], is 500 MeV. Thus we expect this measurement to be already

competitive with regard to the statistical uncertainty over other historically more frequently

pursued methods in LHC Run 3. We further expect that the statistical uncertainty will go

down to about 100 MeV at HL-LHC for 3000 fb�1. Hence, a thorough discussion of the

systematic uncertainties associated with this method is now in order.

– 16 –

G
fit
�
LB;E

rest
b , w, ⌫

�
=

Z Eb

EB,min

dEB

Z Eb,max

Eb,min

dEb
1

N(w)
exp


� w

✓
Eb

Erest
b

+
E

rest
b

Eb

◆⌫ �
⇥

X

i

Di

✓
EBi

Eb
;Eb

◆
fimBi

c⌧ restBi

q
E2

B �m2
Bi

exp

0

@�
LBmBi

c⌧ restBi

q
E2

B �m2
Bi

1

A ,

(3.7)

where the functions, variables, and parameters in this expression play the following roles:

G
fit
�
LB;E

rest
b , w

�
! fitting function for the decay length (LB) distribution

best-fit value of parameter Erest
b !

m
2
t �M

2
W +m

2
b

2 mt

⌧
rest
B ! mean decay lifetime of B-hadron in its rest frame

parameter w ! width of fitting function

parameter ⌫ ! tails weight of fitting function

i ! B-hadron species

Di

✓
EBi

Eb
;Eb

◆
! bottom quark fragmentation function for species i

fi ! relative proportion of species i

N(w) ! normalization factor

Concerning hadronization, we note that the relative fractions fi, in principle, depend

on the kinematics of the bottom quark, see e.g. [27, 28, 30, 31] for the pT and ⌘ depen-

dence of ⇤b and Bs production, and therefore on the production mechanism, including a

subtle dependence on the color environment, which raises some doubt about the universal

applicability of results from e
+
e
� machines to hadron machines at the level of precision

that our method may require.

Also the fragmentation functions Di

⇣
EBi
Eb

;Eb

⌘
are a crucial input and are currently

not well measured at hadron colliders. For our study we assume that these quantities are

perfectly known. This helps us to disentangle the role of uncertainty in Di from other

uncertainties in the method. To mimic this situation we exploit the Monte Carlo truth

from Pythia8 by looking at the b quark energy, and the energy, decay length, as well as

the identity of each specific B hadron species generated in each event. The initial energy

of the b quark and the energy of the B-hadron are used to create a fragmentation function

Di(
EBi
Eb

;Eb), as introduced in Eq. (2.13), for each hadron species Bi. The particle IDs are

used to identify hadron species and thereby determine the hadron fractions fi to be used

in our template computation. We stress that extracting Di from Pythia is a practical trick
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Impact of uncertainty on Di
Figure 6. Fragmentation function obtained from Pythia 8 using a ATLAS tune (Tune:pp 21) and
the default tune (Tune:pp 14) for mt = 171 GeV.

Figure 7. E↵ect on the extracted mt from the change of the fragmentation function as parame-
terized by changing mt in the data used to the MC truth on which the fragmentation functions is
measured. The mt used to measure the fragmentation is on the horizontal axis; the measurement
is shown as a black line for each subplot corresponding to a correct mt used to generate data. The
blue line is shown as a reference, as it corresponds to an unbiased measurement.

are not plagued by jet energy scale uncertainty. The largest uncertainty in the latest

CMS analysis is due to modeling of the top quark pT distribution [11], which shows how

the measurement is in general sensitive to the production mechanism of the top quarks.

Our method, if applied on fully inclusive data samples and with a perfect ansatz for the

shape of the b quark energy distribution, would be independent of top quark production

mechanism, hence we expect our results to have little sensitivity to top quark pT . In fact,
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Mellin Moment �hz
n
i/hz

n
i �mt(10% reweighting) Sensitivity

hzi 2.8 % 3.5

hz
2
i 5.2 % 1.7 GeV 2.5

hz
3
i 7.2 % 1.4

Table 5. For each of the first three Mellin moments of the Di we report: the di↵erence between
the default Pythia tune (Tune:pp 14) and the ATLAS tune (Tune:pp 21); the e↵ect on the extracted
mt stemming from a 10% contamination of the ATLAS tune into the Monash tune; the sensitivity
of the extracted mt to each Mellin moment.

Mellin Moment �hz
n
i/hz

n
i �m

(171!176)
t Sensitivity

hzi 0.53 % 3.8

hz
2
i 0.91 % 3.5 GeV 2.2

hz
3
i 1.23 % 1.6

Table 6. For each of the first three Mellin Moments of the fragmentation function we report:
their change due to varying the mt value that labels the Di extracted from the Monte Carlo truth
from 171 GeV to 176 GeV; the change on the extracted mt due to using the Di extracted from the
Monte Carlo truth for mt = 176 GeV on the data sample for mt = 171 GeV; the sensitivity of the
extracted mt to each Mellin moment.

by looking at the Mellin moments of the Di functions. We summarize these findings and

quote our result as a sensitivity reported in Table 6. As for the first analysis, we find that

a knowledge of the (Mellin moments of) Di with precision about 3 times better than the

desired precision on mt is needed if one does not want to see the mt measurement spoiled

by a poor knowledge of Di.

Other analyses are possible to asses the sensitivity to Di. For instance, one could

try to use Di computed from experimental inputs using calculations to some order in

perturbation theory, e.g. following recent e↵orts to improve the knowledge of fragmentation

from first principles calculations [33–35, 43] which contain scale parameters, such as the

fragmentation and renormalization scales. As customary in pQCD studies the change on

Di that follows from the variation of these scales can be taken as a source of uncertainty

in the results, in our case on the templates Eq. (3.7) and the mt extraction to which they

give rise. We do not attempt this kind of analysis here, as it has more to do with the work

of extraction of Di. Furthermore, e↵ects on Di from this type of theory uncertainty can

be captured in any case by our statement on the Mellin moments described above.

It is important to remark that the present knowledge of Di, be it taken as a phe-

nomenological parameter tuned over data, e.g one of the Pythia tunes we have compared,

or from first principle computations applied on data, is far from the necessary precision to

not spoil a determination of mt that aims at a sub-GeV precision. As far as we know this

situation is common to other methods that explicitly use hadrons produced in tt̄ events,

see e.g. [11, 15, 36–38]. Therefore we urge for improvements on the determination of

fragmentation functions both on the experimental and theoretical side.
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rb : 0.855 → 1.05
rATLAS
b : 1.05(2) ⇒ δmt ≃ 1.2 GeV



Impact of  measurement uncertainty on the 
template definition

best

⌫ 0.3

Eb range [40,450] GeV

EB 7GeV < EB < Eb

LB [0,20] mm

Table 2. Summary of the parameters that we fixed to compute our template Eq. (3.7).

result that should be associated with them. Results on these matters are presented in

Section 4.

To compute the templates of Eq. (3.7), we need to fix some parameters. Concerning

the integrals, we set the lower and upper limits of the Eb integration range to 40 GeV

and 450 GeV, respectively. For the energy EB we impose a minimum energy requirement,

EB > 7 GeV and a fragmentation boundary constraint EB < Eb. ( [comment-JI - how

do these get applied in real data? One does not have access to EB in all cases,

such as leptonic B hadron decays involving neutrinos or neutral particles...]

–JI) It turns out we need this cut, see Sec. 4.These range choices were chosen to

minimize both error and bias in our result. Variations of these ranges have been tested

and are discussed in Section 4.

For our top quark mass extraction, we will consider only a limited range of LB, to

maximize the stability of our results and the precision attainable. We found that the

calculation of the double convolution becomes numerically challenging when evaluated for

very large decay lengths. As there is only 5% of the total data at LB > 20 mm, we use the

range LB 2 [0, 20] mm. For our measurement, there is no lower limit on the range of B-

hadron decay lengths, but in practice, experiments have a minimum threshold of O(1) mm

on decay length. We find that our results change negligibly when we increase the lower

limit of the B-hadron decay length to 1 mm. As this threshold is experiment-dependent,

we quote results for a fitting range starting at 0 mm in the following.

The exponent ⌫ in Eq. (3.7) is in principle a parameter of our template that would

need to be floated in the fit. This is a new parameter compared to our original ansatz of

Ref. [5], which corresponds to ⌫ = 1. Variations of ⌫ mostly change the shape of the b quark

energy spectrum in the tail regions, which have a greater importance for this application

than in our earlier work. Its value participates in the definition of our template and we

find ⌫ = 0.3 as optimal for minimizing overall bias in our result.

Having set these hyper-parameters, as summarized in Table 2, all that remains to be

done is to fit the decay length data to the fitting function Eq. (3.7), and obtain E
rest
b and

its uncertainty from a �
2 analysis. Then mtop is obtained from E

rest
b .

Ideally, we want to have a precise measurement, that stems from a narrow �
2, with no

bias from our template fits. In other words, the minimum of the �
2 should coincide with

the input top quark mass. We estimate the bias by doing pseudo-experiments for various

combinations of the hyper-parameters and we pick the values which lead to the smallest

bias. These optimal values are collected in Table 2. The stability of the estimated bias and
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Figure 10. The normalized E(B) distribution for fixed scale (3.2). Shown are the 15 point scale
variation bands for LO, NLO and NNLO as well as the NPFF r.m.s. uncertainty band. The plot to
the right is like the one to the left but with LO top decay.

as a function of mt, one can infer the value of mt from a direct measurement of Emax(B). In

practice, for values of mt close to the world average, it is su�cient to consider a linear fit

Emax(mt) = amt + b . (3.7)

Our predictions for the coe�cients (a, b) at LO, NLO and NNLO can be found in table 2

(with full top quark decay) and in table 3 (for LO top quark decay). The uncertainties on

the fit parameters are explained in the following.

An important feature of the method of refs. [62, 65] is that the top quark decay is a

two-body one, i.e. LO-like. Once one includes higher order QCD corrections the top decay

is modified by an additional radiation which alters the top decay kinematics. This radiation

a↵ects the position of the peak of the E(B) distribution and needs to be accounted for in any

realistic application of this method. The NLO QCD corrections were first included in ref. [65]

where a significant shift in the peak position was observed. In this work we also extend, for

the first time, this observable to NNLO in QCD and observe that the NNLO QCD corrections

lead to a further shift in the position of Emax(B). As can be seen in table 2, the inclusion

of NLO corrections in top decay leads to a roughly 4 GeV shift in Emax(B) while the NNLO

ones lead to a further 2 GeV shift. Clearly, the inclusion of the NNLO QCD corrections is

mandatory for a reliable description of this observable.

As a calibration of the method, in table 3 we have shown the same predictions but where

the top quark decay has consistently been kept at LO. As can be seen there, within the

uncertainty of the calculation, the position of the maximum remains stable through NNLO,

as expected.

Finally, we would like to mention that while we only show predictions for the final state

with a B-hadron, similar predictions can also be made for final states with a J/ or a muon.

Before we conclude our discussion of the E(B) distribution we would like to explain how

the position of the maximum Emax(B) has been determined. This is a non-trivial task since
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mt LO NLO NNLO

171.5 GeV 37.553 (±0.106) (+0.050
�0.061) 40.994 (±0.147) (+1.178

�0.710) 42.957 (±0.329) (+1.087
�0.818)

172.5 GeV 37.816 (±0.109) (+0.051
�0.062) 41.277 (±0.158) (+1.196

�0.717) 43.263 (±0.332) (+1.073
�0.825)

173.5 GeV 38.093 (±0.113) (+0.051
�0.061) 41.657 (±0.168) (+1.250

�0.745) 43.528 (±0.222) (+1.010
�0.778)

Lin. fit LO NLO NNLO

a = 0.270 (±0.004) 0.329 (±0.028) 0.284 (±0.011)

b = �8.755 (±0.708) GeV �15.429 (±4.820) GeV �5.666 (±1.816) GeV

Table 2. Values of Emax(B) for the absolute di↵erential cross section with full top quark decay at
LO, NLO and NNLO and for three di↵erent values of mt. Positions are fit using eq. (3.9) and 5 GeV
bins. Also given are the parameters of the linear fit eq. (3.7) at LO, NLO and NNLO.

mt LO NLO NNLO

171.5 GeV 37.553 (±0.106) (+0.050
�0.061) 36.744 (±0.169) (+0.213

�0.313) 36.737 (±0.311) (+0.081
�0.021)

172.5 GeV 37.816 (±0.109) (+0.051
�0.062) 36.981 (±0.182) (+0.223

�0.330) 37.010 (±0.227) (+0.109
�0.019)

173.5 GeV 38.093 (±0.113) (+0.051
�0.061) 37.319 (±0.193) (+0.206

�0.296) 37.292 (±0.255) (+0.113
�0.056)

Lin. fit LO NLO NNLO

a = 0.270 (±0.004) 0.286 (±0.029) 0.278 (±0.003)

b = �8.755 (±0.708) GeV �12.237 (±4.962) GeV �10.913 (±0.556) GeV

Table 3. As in table 2 but for LO top quark decay.

our calculation produces not the di↵erential spectrum but its binned version, i.e. the position

of the maximum is obscured by finite bin size e↵ects. To this end we extract the position of

the maximum with the help of a fit

f(E) = n exp

 
�w

 
Ê

E
+

E

Ê

!!
, (3.8)

performed at each perturbative order and for each scale combination. The fit parameters are

n, w and Ê, the latter giving the curve’s maximum position. The functional form in eq. (3.8)

is the same one used in ref. [65]. We fit the range E(B) 2 [25, 100] GeV using 5 GeV wide

bins. The �
2 for the fit (3.8) is computed as

�
2 =

X

i2Bins

✓
f(E(B)i) �

d�

dE

���
E=E(B)i

◆2✓d�
MCerr

dE

���
E=E(B)i

◆�2

, (3.9)

where E(B)i is the middle of each E(B) bin and �
MCerr indicates that only the MC uncer-

tainty of the calculation in each bin is used. As usual, the uncertainty on the fit parameters

is given by the interval defined by ��
2 = 1. The uncertainties in tables 2 and 3 are derived

as follows. The first one refers to the uncertainty due to the parameter Ê, while the second

bracket gives an estimate of the scale uncertainty which is derived by repeating the fit for

each scale choice and taking the envelope of all 15 values. The uncertainties of the a and b
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Figure 10. The normalized E(B) distribution for fixed scale (3.2). Shown are the 15 point scale
variation bands for LO, NLO and NNLO as well as the NPFF r.m.s. uncertainty band. The plot to
the right is like the one to the left but with LO top decay.

as a function of mt, one can infer the value of mt from a direct measurement of Emax(B). In

practice, for values of mt close to the world average, it is su�cient to consider a linear fit

Emax(mt) = amt + b . (3.7)

Our predictions for the coe�cients (a, b) at LO, NLO and NNLO can be found in table 2

(with full top quark decay) and in table 3 (for LO top quark decay). The uncertainties on

the fit parameters are explained in the following.

An important feature of the method of refs. [62, 65] is that the top quark decay is a

two-body one, i.e. LO-like. Once one includes higher order QCD corrections the top decay

is modified by an additional radiation which alters the top decay kinematics. This radiation

a↵ects the position of the peak of the E(B) distribution and needs to be accounted for in any

realistic application of this method. The NLO QCD corrections were first included in ref. [65]

where a significant shift in the peak position was observed. In this work we also extend, for

the first time, this observable to NNLO in QCD and observe that the NNLO QCD corrections

lead to a further shift in the position of Emax(B). As can be seen in table 2, the inclusion

of NLO corrections in top decay leads to a roughly 4 GeV shift in Emax(B) while the NNLO

ones lead to a further 2 GeV shift. Clearly, the inclusion of the NNLO QCD corrections is

mandatory for a reliable description of this observable.

As a calibration of the method, in table 3 we have shown the same predictions but where

the top quark decay has consistently been kept at LO. As can be seen there, within the

uncertainty of the calculation, the position of the maximum remains stable through NNLO,

as expected.

Finally, we would like to mention that while we only show predictions for the final state

with a B-hadron, similar predictions can also be made for final states with a J/ or a muon.

Before we conclude our discussion of the E(B) distribution we would like to explain how

the position of the maximum Emax(B) has been determined. This is a non-trivial task since
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Figure 7. The absolute E(F ) (left column) and pseudorapidity |⌘(F )| (right column) distributions for
F = B (top), F = J/ (middle) and F = µ (bottom). The prediction uses the fixed scale (3.2). Shown
are the 15 point scale variation bands for LO, NLO and NNLO as well as the NPFF r.m.s. uncertainty
band (in yellow, shown with respect to the NLO).

been included. We also note that the FF uncertainty is tiny relative to the scale uncertainty

even at NNLO.

The pseudorapidity distributions |⌘(F )| for the three final states are shown in fig. 7. As

it may be expected, all three are very well behaved in the full kinematic range and show

no noticeable shape di↵erence between NLO and NNLO. The NNLO uncertainty bands are

much smaller than the NLO ones and the NNLO/NLO K-factor is very small. We conclude
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
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variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
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Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables

7

P Y T H I A  PA R A M E T E R S

a
b, rB

EB/Eb

pTmin

αS 



E V E N T  G E N E R AT O R S

Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables

7

H E R W I G  PA R A M E T E R S

VXCUT

ΛQCD 

M A S S  O F  D A U G H T E R  C L U S T E R S  U N I F O R M LY  D I S T R I B U T E D  I N  M P S P LT



E V E N T  G E N E R AT O R S

Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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Pythia8 parameter range Monash default
pT,min TimeShower:pTmin 0.25-1.00 GeV 0.5
↵s,FSR TimeShower:alphaSvalue 0.1092 - 0.1638 0.1365
recoil TimeShower:recoilToColoured on and off on

b quark mass 5:m0 3.8-5.8 GeV 4.8 GeV
Bowler’s rB StringZ:rFactB 0.713-0.813 0.855

string model a StringZ:aNonstandardB 0.54-0.82 0.68
string model b StringZ:bNonstandardB 0.78-1.18 0.98

Table 1: Ranges and central values of the parameters that we varied. Note

that some values are not varied around the default values of the Monash tuning.

For instance we run rB around the mid-point between Pythia6.4 and Pythia8-

Monash values.

2.2 Variation of HERWIG parameters

For the sake of comparison, we also investigate the impact of the HERWIG
shower and hadronization parameters on the top-quark mass measurement.
In fact, HERWIG and PYTHIA generators differ in several aspects: for
example, the ordering variables of the showers are not the same, matrix-
element corrections are implemented according to different strategies and,
above all, models for hadronization and underlying events are different.

As far as HERWIG is concerned, hadronization occurs according to the
cluster model, which is strictly related to the angular ordering of the par-
ton shower, yielding color pre-confinement even before the hadronization
transition. In the following, we shall use the HERWIG 6 event generator,
written in the Fortran language. In fact, although the object-oriented code
HERWIG 7 [45] presents a number of improvements, especially when us-
ing the new dipole shower model with the improved kinematics for massive
quarks [46], the comparison with the e+e� ! bb̄ data is still not optimal.

As for HERWIG 6, in Ref. [47] the authors tried to tune it to LEP
and SLD data, finding that the comparison could be much improved with
respect to the default parametrization, although some discrepancy still
persists and the prediction is only marginally consistent with the data. As a
whole, we decided to follow [47] and stick to using HERWIG 6 in the present
paper. As done in the case of PYTHIA, we identify the relevant shower
and hadronization parameters and vary them by at most 20% around their
respective default values.

parameter range default
Cluster spectrum parameter PSPLT(2) 0.9 - 1 1

Power in maximum cluster mass CLPOW 1.8 - 2.2 2
Maximum cluster mass CLMAX 3.0 - 3.7 3.35

CMW ⇤QCD QCDLAM 0.16 - 2 0.18
Smearing width of B-hadron direction CLMSR(2) 0.1 - 0.2 0

Quark shower cutoff VQCUT 0.4 - 0.55 0.48
Gluon shower cutoff VGCUT 0.05 - 0.15 0.1
Gluon effective mass RMASS(13) 0.65 - 0.85 0.75
Bottom-quark mass RMASS(5) 4.6 - 5.3 4.95

Table 2: Herwig 6 parameters under consideration and ranges of their varia-

tion.

The relevant parameters of the cluster model are the following:
CLMSR(2) which controls the Gaussian smearing of a B-hadron with re-
spect to the b-quark direction, PSPLT(2) which governs the mass distribu-
tion of the decays of b-flavored clusters, and CLMAX and CLPOW which
determine the highest allowed cluster masses. Their default values and
variation ranges are summarized in Table 2. Furthermore, unlike Ref. [47]
which just accounted for cluster-hadronization parameters, we shall also
explore the dependence of top-quark mass observables on the following
parameters: RMASS(5) and RMASS(13), the bottom and gluon effective
masses, and the virtuality cutoffs, VQCUT for quarks and VGCUT for glu-
ons, which are added to the parton masses in the shower (see Table 2). We
also investigate the impact of changing QCDLAM as it plays the role of an
effective ⇤QCD in the so-called Catani–Marchesini–Webber (CMW) defini-
tion of the strong coupling constant ↵S in the parton shower (see Ref. [48]
for the discussion on its relation with respect to the standard ⇤QCD in the
MS scheme). As well as for other paramters, we vary QCDLAM around
its default value, the range of variation is tabulated in Table 2.

3 Observables

In this section, we identify the observables that we employ to study their
sensitivities to parameter variations. We first discuss the observables rele-
vant to top quark mass measurements, followed by our proposed variables
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• QCDLAM can be identified at high momentum fractions (x or z) with the funda-
mental 5-flavour QCD scale Λ(5)

MS
. However, this relation does not necessarily

hold in other regions of phase space, since higher order corrections are not
treated precisely enough to remove renormalisation scheme ambiguities [13].

• RMASS(1, 2, 3, 13) are effective light quark and gluon masses used in the hadron-

ization phase of the program. They can be set to zero provided the parton
shower cutoffs VQCUT and VGCUT are large enough to prevent divergences (see

below).

• For cluster hadronization, it must be possible to split gluons into qq̄, i.e.
RMASS(13) must be at least twice the lightest quark mass. Similarly it may

be impossible for heavy-flavoured clusters to decay if RMASS(4, 5) are too low.

• VQCUT and VGCUT are needed if the quark and gluon effective masses become
small. The condition to avoid divergences in parton showers is

1

Qi
+

1

Qj
<

1

QCDL3

for either i or j or both gluons, where Qi = RMASS(i) + VQCUT for quarks,

RMASS(13) + VGCUT for gluons, and QCDL3 is the three-flavour QCD scale used
internally by HERWIG. QCDL3 is obtained by matching at the b- and c-quark

mass scales from the internal five-flavour scale

QCDL5 = QCDLAM × exp

(
151− 9π2

138

)
/
√

2 = 1.109× QCDLAM .

Note that, in the notation of ref. [13] and section 3.2, QCDL5 = Λphys/
√

2 for

five flavours.

• VPCUT is the analogous quantity for photon emission. It now defaults to
0.4 GeV. Previous versions defaulted to

√
s, switching off such emission. Re-

sults after experimental cuts are insensitive to its exact value in the range 0.1
to 1.0GeV.

• CLMAX and CLPOW determine the maximum allowed mass of a cluster made from

quarks i and j as follows

MCLPOW < CLMAXCLPOW + (RMASS(i) + RMASS(j))CLPOW .

Since the cluster mass spectrum falls rapidly at high mass, results become
insensitive to CLMAX and CLPOW at large values of CLMAX. Smaller values of

CLPOW will increase the yield of heavier clusters (and hence of baryons) for heavy
quarks, without affecting light quarks much. For example, the default value

gives no b-baryons whereas CLPOW = 1.0 makes b-baryons/b-hadrons about 1/4.
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