Traveling Wave
Parametric Amplifiers

(within DARTWARS)

Marco Faverzani University & INFN Milano - Bicocca

Ultra low noise amplification for microwave readout: why?

multiplexed readout of large detector/qubit array

N. Zobrist et al. <u>Appl. Phys. Lett. 115 (2019) 042601</u>
L. Ranzani et al. <u>Appl. Phys. Lett 113 (2018) 242602</u>
J. Heinsoo et al. <u>Phys. Rev. Applied 10 (2018) 034040</u>

readout for axionic dark matter detection

C. Braggio et al. Rev. Sci. Instrum. 93 (2022) 094701

J.M. Navarro and B.K. Tan Proc. SPIE Int. Soc. Opt. Eng. 11881 (2021)

microwave quantum key distribution

F. Fesquet et al. arXiv:2203.05530v1 [quant-ph]

quantum radar

L. Fasolo et al. Measurement: Sensors 18 (2021) 100349

squeezed-state microwave radiation source

A.L. Grimsmo and A. Blais Npj Quantum Inf. 3 (2017) 20 M. Esposito et al. Phys. Rev. Lett. 128 (2022) 153603

Measurement: Sensors 18 (2021) 100349 Proc.SPIE Int.Soc.Opt.Eng. 11881 (2021) 139-148

all these applications require broadband amplification and minimum added noise (i.e. information preservation)
Travelling-Wave Parametric Amplifiers (TWPA) are (near) quantum limit amplifiers capable to match these requirements

High fidelity qubits readout

- 1) sinusoidal driving force $(f_d = f_r \rightarrow \text{linear gain with time})$
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow$ exponential growth)

e.g., the pendulum:
$$\ddot{\theta}\cong \frac{g}{l}\theta$$
 , $\omega=\sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

- sinusoidal driving force $(f_d = f_r \rightarrow \text{linear gain with time})$
- one parameter periodically varied ($f_d = 2f_r \rightarrow$ exponential growth)

e.g., the pendulum:
$$\ddot{\theta}\cong \frac{g}{l}\theta$$
 , $\omega=\sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

- 1) sinusoidal driving force $(f_d = f_r \rightarrow \text{linear gain with time})$
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow \text{exponential growth}$)

e.g., the pendulum:
$$\ddot{\theta}\cong \frac{g}{l}\theta$$
 , $\omega=\sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

Josephson Junctions (JJ)
$$\rightarrow$$
 $L_J = L_{J0} \frac{\arcsin(I/I_c)}{I/I_c}$

- 1) sinusoidal driving force $(f_d = f_r \rightarrow \text{linear gain with time})$
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow$ exponential growth)

e.g., the pendulum:
$$\ddot{\theta}\cong \frac{g}{l}\theta$$
 , $\omega=\sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

Kinetic Inductance (KI)
$$\rightarrow$$
 $L_K = L_{K0} \left(1 + \frac{I^2}{I_*^2} \right)$

Resonance if:

- 1) sinusoidal driving force $(f_d = f_r \rightarrow \text{linear gain with time})$
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow$ exponential growth)

e.g., the pendulum:
$$\ddot{\theta}\cong \frac{g}{l}\theta$$
 , $\omega=\sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

resonator-based parametric amplifiers (JPA, JPC, etc.)

- 1) sinusoidal driving force $(f_d = f_r \rightarrow \text{linear gain with time})$
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow \text{exponential growth}$)

e.g., the pendulum:
$$\ddot{\theta}\cong \frac{g}{l}\theta$$
 , $\omega=\sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

Low noise readout

- the amplifier adds noise to several sources (thermal fluctuations, e-h recombination in semiconductors, etc.)
- a quantum limited amplifier has an added (temperature) noise $T_N/f \sim b/2k_B \sim 25 \text{ mK/GHz}$
- in a two-stage amplification scheme, the first stage dominates the overall noise figure (if $G_1\gg F_2$)

$$F_{TOT} = F_1 + \frac{F_2 - 1}{G_1}$$

Josephson Parametric Amplifiers (JPA)

- signal to be amplified mixed with a strong pump through a nonlinear element
- in JPAs, non-linearity provided by the Josephson junction
- demonstrated noise level close to the quantum limit
- very narrow bandwidth < 100 MHz
 - > few detectors/qubits per line
 - > product gain-BW is fixed
- very small saturation power < -100 dBm
 - > few devices per line
- currently employed as a first stage of amplification in reading out superconducting qubits and RF cavities

IEEE Microwave Magazine 21, 8 (2020) 45

Traveling Wave Parametric Amplifiers (TWPAs)

• transmission line with embedded non-linear elements

Phys. Rev. B 87, 144301

 non-linearity provided by Josephson Junction or intrinsic (non-linear) Kinetic Inductance of a superconductor

Unbiased transmission line: 4-wave mixing

$$\Delta \beta = k_s + k_i - 2k_n$$

$$2\omega_p = \omega_s + \omega_i$$

Biased transmission line: 3-wave mixing

$$\Delta\beta=k_s+k_i-k_p$$

$$\omega_p = \omega_s + \omega_i$$

$$L(I) \approx L_o \left[1 + \frac{I_{dc}^2}{I_*^2} + 2 \frac{I_{RF}I_{dc}}{I_*^2} \right]$$

A large pump tone (f_p) modulates the inductance, coupling the pump to a signal (and an idler) tone via frequency mixing

Periodic loading

• periodic loading along the transmission line creates the phase matching condition

$$\Delta \beta = k_s + k_i - k_p = -\frac{k_p |A_p|^2}{I_*'^2}$$

- prevents creation of shock waves
 - velocity decreases with current
 - tail of a pulse moves faster than peak
 - shock waves would limit the gain at 3 dB!
- avoids coupling with higher harmonics of the pump
- ➤ High (exponential) gain:

$$G = \frac{1}{4} \exp(2 \frac{k_p |A_p|^2}{I_*'^2})$$

TWPAs: Josephson and Kinetic Inductance

Traveling Wave Josephson Parametric Amplifiers

Science 350, 6258 (2015) 307-310

- TWJPAs: non-linear lumped element transmission line
- one single cell consists of a Josephson Junction plus a capacitive shunt toward the ground
- demonstrated quantum-limited noise level
- wide BW > 4 GHz @ 5 GHz
- limited gain < 20 dB
- small saturation power < -90 dBm

Kinetic Inductance Traveling Wave Parametric Amplifiers

Nature Physics 8 (2012) 623–627

- KI-TWPA (a.k.a. KIT): distributed non-linear kinetic inductance of TiN or NbTiN
- patterned into CPW or lumped element artificial transmission line
- noise close to quantum limit
- wide BW >4 GHz @ 5 GHz
- limited gain and gain profile with large ripple
- high saturation power: from -50 to -45 dBm

DARTWARS: Detector Array Readout with Traveling Wave AmplifieRS

The main aims of DARTWARS are:

- 1. development of high-performance amplifiers both KIT and TWJPA optimizing design, new materials and fabrication processes
 - high gain $\sim 20 \text{ dB}$
 - large saturation power $\sim 50 \text{ dBm}$
 - (nearly) quantum limited noise $T_N \le 600 \text{ mK}$
 - reduced gain ripple
 - yield improvement
- 2. demonstration of readout of various detectors/devices (i.e., TESs, MKIDs, RF cavities and qubits) with improved performances thanks to the amplification with added noise at the quantum level

picture courtesy of INRiM

DARTWARS: the collaboration

INFN units:

- MIB: coordination of the whole project with a focus on the design and characterization of the devices (mainly DTWKI)
- LNF COLD (CryOgenic Laboratory for Detectors): supervision of the devices' fabrication and participation in the characterization (mainly TWJPA)
- LE: investigation of magnon-cavity polaritons applied to quantum computing and quantum sensing
- SA: coordination of design and simulation of TWPAs; packaging and testing of TWJPA
- TIFPA: supervision of production at FBK; participation in the characterization (mainly DTWKI)

Other institutions:

- Fondazione Bruno Kessler (FBK) Micro System Technology group (MST) of Centre for Materials and Microsystems (CMM): fabrication of DTWKI prototypes
- Istituto Nazionale di Ricerca Metrologica (INRiM): design and fabrication of TWJPA prototypes
- Institute for Basic Science Center for Axion and Precision Physics Research (IBS-CAPP): co-finances the production; participation in the characterization
- National Institute of Standards and Technology (NIST): participation in designing and testing of DTWKI

KITWPA within DARTWARS

CPW

Artificial transmission line

• CPW:

- ➤ first implementation of KI-TWPA
- B. Eom et. al., Nature Phys. 8 (2012) 623–627

- > ease of fabrication
- ➤ good gains, BW and noise
- ➤ 2 m long CPW for +15 dB gain
- \triangleright high impedance (200 Ω) \rightarrow match to 50 Ω required
- Artificial transmission line:
 - > small sections of a CPW recreate a transmission line of lumped-elements
 - ➤ 20 cm long transmission line for +15 dB gain
 - ➤ near-quantum-limited noise demonstrated in the 3.5-5.5 GHz

M. Malnou et al., PRX Quantum 2 (2021) 010302

DART WARS

- Goal: 20 nm thick NbTiN film $T_c \sim 14$ K, $L_k \sim 10$ pH/ \square
- new sputter (PVD Kenosistec 800 Cluster)
- sputter target Nb_{0.80}Ti_{0.20}
- Nb dry etch with SF₆ and Ar (new recipe)
- how do (T_c, R_s, L_k) depend on sputtering parameters?

W	P [W]	p [mbar]	$f_{\rm N2}$ [sccm]
T1	700	2e-3	5
Т2	700	3e-3	4
Т3	700	3e-3	5
T4	700	3e-3	6
Т5	1200	3e-3	5
Т6	700	3e-3	7
Т6В	700	3e-3	7
Т7	700	3e-3	8
Т8	700	3e-3	6.5
Т9	700	3e-3	7
T10	600	3e-3	7

For all wafers:

Ar flow = 50 sccm t = 6 minutes T = 400 °C

13

Run DWT2

Run DWT3

Wafer	t [minutes]
DWT3/w1	6
DWT3/w2	2
DWT3/w3	9
DWT3/w4	4
DWT3-bis/w1	3
DWT3-bis/w2	2.5

For all wafers:

$$P = 600 \text{ W}$$

 $p = 3\text{e}-3 \text{ mbar}$
Ar flux = 50 sccm
 $N_2 \text{ flux} = 7 \text{ sccm}$
 $T = 400 \text{ °C}$

Lithography with KIDs mask → more precise measurement of thickness:

Results on Run DWT3

KITWPA: material characterization @FBK/TIFPA

NbTiN patterned into micro-resonators (KIDs) to characterize the kinetic inductance (and its non-linearity)

Device from film W6 -30 -35 Frequency (GHz) (dB) 4.557e+09 4.558e+09 4.556e+09 4.559e+09 4.56e+09 Frequency (GHz)

Quality factors in the range $(0.2 - 1) \cdot 10^5$

$$L_k = L_{k_0} \left[1 + \left(\frac{I}{I_*} \right)^2 \right]$$

KITWPA: material characterization @FBK/TIFPA (cont'd)

M. Borghesi et. al., arXiv:2208.10101 [quant-ph]

need to:

- relate L_k to $f_{res} \rightarrow$ Sonnet simulation: $(f_{res})^{-2} \propto (L_k + L_g)C$
- relate I^2 to $P_{\text{feedline}} \rightarrow \text{estimated } C \text{ and } L \text{ from Sonnet}$ → circuit simulator (QUCS)
- estimate I_* from $L_k(f_{res})$ (Sonnet)

$$L_k = L_{k_0} \left[1 + \left(\frac{I}{I_*} \right)^2 \right]$$

Kinetic Inductance vs Resonator I2

 $L_{\rm s}$ measured between ~ 4 and 50 pH/sq I_* (18 – 20) mA $I_{\rm c}$ (2.2 – 2.4) mA

KITWPA – Design

Straight Cell Unloaded Loaded Unloaded $Z_0 = 50 \Omega Z_0 = 80 \Omega Z_0 = 50 \Omega$

KITWPA – Design

Wires with different size for DC characterizations: T_c , R_n , L_k

KITWPA – Design

INFN-TIFPA and FBK

KITWPA – Production

DART WARS

Optical Microscopy Images

Scanning Electron Microscopy Images

KITWPA – Expected performance

KITWPA @NIST

Supercell in a curved part

• NbTiN thickness 20

- first KI-TWPA prototypes with t = 10 nm produced at the end of October with two different unloaded/loaded cell repetition (60-6 and 42-6 for two different frequency range)
- characterization measurements in progress

KITWPA @NIST

Device characterization – NbTiN 20 nm

KITWPA @NIST

• want to reduce thickness of film

$$L(I) = L_0(1 + \frac{I^2}{I_*^2})$$

- smaller thickness \rightarrow larger $L_0 \rightarrow$ lower I to get same L
- smaller power, meaning lower added noise

Normalized Transition Curve						
1.0						
1.0 -						
- 8.0 Su			Comment			
$R/R_{ m Sn}$			3890000000			
			00000		O	$t=5\mathrm{nm}$
0.2 -		(C)	000000000000000000000000000000000000000		0	$t = 10 \mathrm{nm}$ $t = 20 \mathrm{nm}$
0.0		0 1	2	1.4		
10 12 14 16 Temperature [K]						

t [nm]	Т _с [K]	$L^0_{ m k}$ [pH/ \square]	$L^{\mathrm{res}}_{}\mathbf{k}}$ [pH/ \square]	\mathcal{Q}_{i}
5	9.5	118.6	93.3	30k
10	11.6	32.9	31.5	50k
20	13.1	10.5	10.6	70k

TWJPA within DARTWARS

- recent studies suggest that TWJPA operated in the three-wave mixing (3WM) mode might increase the power handling, while decreasing the gain vs. frequency ripple
- new design 3WM TWJPA based on microwave transmission line composed of a serial array of non-hysteretic one-junction rf-SQUIDs
- mixing process due to the non-linear inductance of the JJs
- JJs created as Al/Al-Ox/Al tri-layer exploiting the Niemeyer-Dolan technique
- design and production made in collaboration with the Istituto Nazionale di Ricerca Metrologica (INRiM, Torino)

TWJPA chip fabricated at INRiM

3 elementary cells

JTWPA

- Josephson Junction **spread** of parameters deeply affect the amplifiers performances (eg. gain)
- Due to the exponential dependence of its properties, Josephson tunnel junctions are the **bottleneck** of the whole JTWPAs operation

TWJPA within DARTWARS

- chips with TWJPA produced at INRiM were tested both at LNF and IBS-CAPP
- measurements showed parametric amplification but with a non-homogeneous behavior in frequency: non-homogeneous fabrication of the ~ 900 JJs of the device
- gain up to 30 dB was observed at particular frequencies and with a minimum noise temperature of 3.63 K
- new design with modified dispersion relation to reducing mismatch between the traveling tones, is in development
- production and characterization of JJs @ INRiM and MIB

JJs production and characterization @INRiM and MIB

- JJs produced at INRiM with two oxidation processes (dynamic and static), but with fixed *time* × *pressure*^{0.5}
- JJs designed to have a $I_c = 4 \mu A$
- expected normal resistance (from Ambegaokar-Baratoff) is $R_{\rm N} \approx 80~\Omega$
- normal resistance measured with 4-terminal probe station coupled to a Keithley 4200A Parameter Analyzer (current ramp $0.1 \div 10~\mu\text{A}$)
- on average R_N is close to the target value
 - still to address spread in value (around 15%)

Conclusions

- the demand for high gain/wide bandwidth with low noise amplifiers is driven by the readout of superconducting qubits, cryo detectors, RF cavities, ...
- design of DARTWARS KI-TWPA started in 2021 and the first material characterizations have been performed across 2021 and 2022. The first devices has been produced during summer; next production with new target expected soon
- demonstration of detectors/qubits readout is expected for 2023
- DARTWARS will allow to build the expertise within INFN in designing and developing innovative quantum devices
- the results of DARTWARS will potentially impact particle/astro-physics (such as m_v measurement, dark matter, $0\nu\beta\beta$, coherent elastic neutrino-nucleus scattering, ...) as much as fast-growing fields such as quantum computing/sensing, quantum squeezing, quantum radar, ...
- more details available at https://dartwars.unimib.it/ and https://biqute.unimib.it/

Backup slides

$L_{\rm s}$ comparison

DARTWARS: readout of superconducting devices

24

homogeneity test from sheet resistance measurement

JTWPA – Technological challenge

Need for **reproducibility** and **stability** of Josephson Junctions on a large scale approach

E. Enrico, et al., Single charge transport in a fully superconducting SQUISET locally tuned by self-inductance effects, AIP Advances **12**, 055122 (2022)

UV shadow lithography based Josephson Junction

Cryogenic Thru-Reflect-Line (TRL)

- necessary to precisely evaluate the *S*-parameters of the device excluding the effects of the readout line
- of great importance for DARTWARS, it will be developed in collaboration with the INRiM branch of SuperQuant (20FUN07 SUPERQUANT - Microwave Metrology for Superconducting Quantum Circuits, under the European Metrology Programme for Innovation and Research (EMPIR))
- technique of great utility also in the field of material characterization finalized to quantum computing

Rev. Sci. Instrum. 91 (2020) 091101

Rev. Sci. Instrum. 84 (2013) 034704