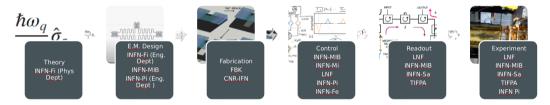
Introducing Qibo

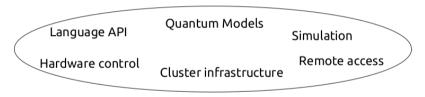
Quantum simulation, control and calibration


Stefano Carrazza, on behalf of the Qibo team December 16th, 2022

SQMS, Padova

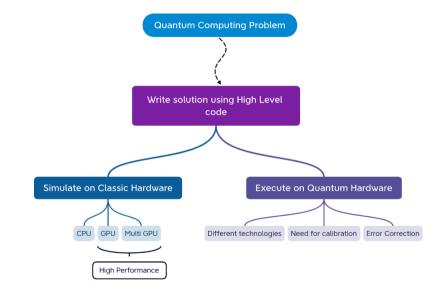
Introduction

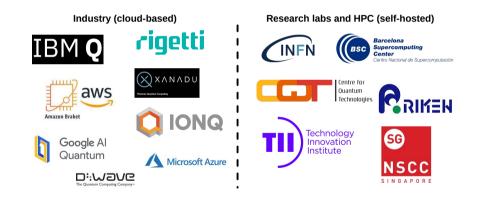
Qub-IT project - CSN V


Qub-IT: Realization of an itinerant single-photon counter that surpasses present devices in terms of efficiency and low dark-count rates by exploiting repeated QND measurements of a single photon and entanglement in multiple qubits.

- Design and simulation of a SC qubit coupled to resonators.
- Fabrication of circuits with SC qubit.
- Single-shot measurement of SC qubit with quantum amplifier.
- Software for simulation, control and calibration of SC qubit.
- Quantum sensing experiment with entangled qubits.

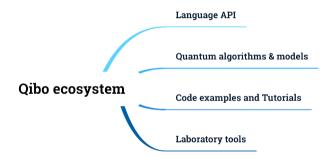
Researcher's needs (lab and theory):


• Access to interdisciplinary set of software tools for:


Open-source software linked to benchmarks and publications.

• Collaborative development and definition of standards.

Quantum software challenges



Cloud-based vs self-hosted devices and simulators:

Introducing Qibo

Qibo is an open-source full stack **API** for quantum simulation and hardware control. It is platform **agnostic** and supports **multiple backends**.

https://github.com/qiboteam/qibo

IOPscience

Quantum Science and Technology

PAPER

$\mathtt{Qibo:}$ a framework for quantum simulation with hardware acceleration

Stavros Efthymiou¹, Sergi Ramos-Calderer^{1,2}, Carlos Bravo-Prieto^{2,3}, Adrián Pérez-Salinas^{2,3}, Diego García-Martín^{2,3,4} (2), Artur Garcia-Saez^{3,5}, José Ignacio Latorre^{1,2,6} and Stefano Carrazza^{8,1,7} (2) Published 16 December 2021 · © 2021 IOP Publishing Ltd Quantum Science and Technology, Volume 7, Number 1 Citation Stavos Efthymiou et al 2022 Quantum Sci. Technol. 7 015018

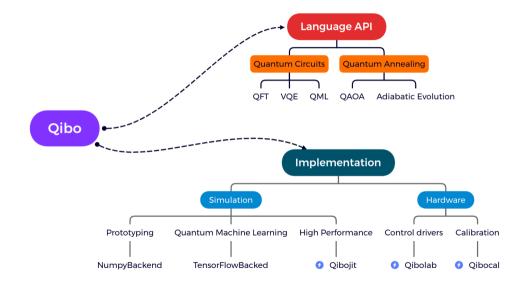
https://arxiv.org/abs/2009.01845

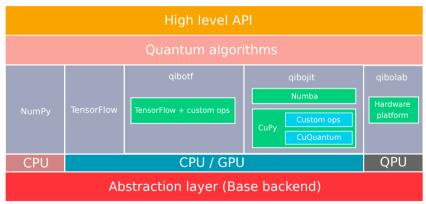
A lantum

Quantum simulation with just-in-time compilation Stavros Efthymiou¹, Marco Lazzarin¹, Andrea Pasquale^{1,2}, and Stefano Carrazza^{1,2,3}

¹Quantum Research Centre, Technology innovation Institute, Abu Dhabi, UAE. ³²TFLRb, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Milan, Italy. ³²CRN, Thoroettal Physics Department, CH-1211 Geneva 23, Switzerland.

Published:	2022-09-22, volume 6, page 814	
Eprint:	arXiv:2203.08826v2	
Dol:	https://doi.org/10.22331/q-2022-09-22	
Citation:	Quantum 6, 814 (2022).	


https://arxiv.org/abs/2203.08826


Laboratory	Country	Technology	Qubits
INFN	Italy	Superconducting	1
TII	United Arab Emirates	Superconducting	1, 2, 5, 20
Qilimanjaro	Spain	Superconducting	1 and 2
CQT	Singapore	SC and trapped ion	up to 10

+70 collaborators

Backends in Qibo

Qibo stack

Qibo simulation benchmarks

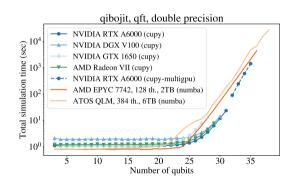
Introducing Qibojit

State vector simulation solves:

$$\psi'(\sigma_1,\ldots,\sigma_n) = \sum_{\boldsymbol{\tau}'} G(\boldsymbol{\tau},\boldsymbol{\tau}')\psi(\sigma_1,\ldots,\boldsymbol{\tau}',\ldots,\sigma_n)$$

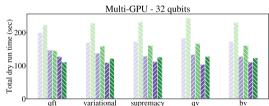
number of operations scales exponentially with the number of qubits. **Qibo** uses just-in-time technology:

- CPU: Numpy tensor, custom operations with Numba.
- GPU(s): CuPy tensors, custom operations using:
 - CuPy JIT raw kernels
 - NVIDIA cuQuantum API


from numba import njit, prange

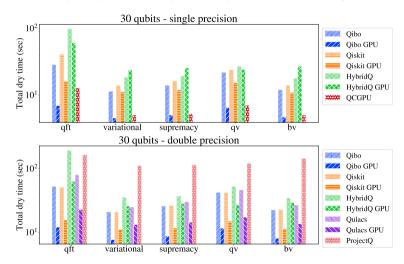
```
Onjit(parallel=True, cache=True)
def apply gate kernel(state, gate, target):
    """Operator that applies an arbitrary one-subit sate.
    Aras:
       state (np.ndarray): State vector of size (2 ** ngubits.).
        gate (np.ndarray): Gate matrix of size (2, 2).
        target (int): Index of the target gubit.
    k = 1 \le target
    # for one target gubit: loop over half states
    nstates = len(states) // 2
    for g in prange(nstates):
        # generate index with fast binary operations
        i1 = ((g >> m) << (m + 1)) + (g k (k - 1))
        i2 = i1 + k
        state[i1]. state[i2] = (gate[0, 0] * state[i1] + \
                                gate[0, 1] * state[i2].
                                gate[1, 0] * state[i1] + \
                                gate[1, 1] * state[i2])
    return state
```

Qibojit features

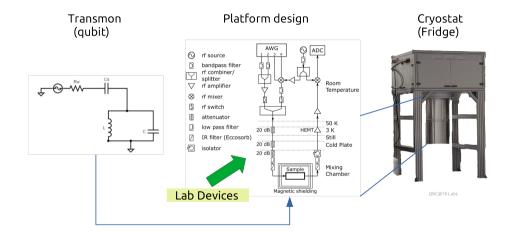

In-place updates, specialized operators for single and two qubit gates (exploit sparsity).

Qibojit

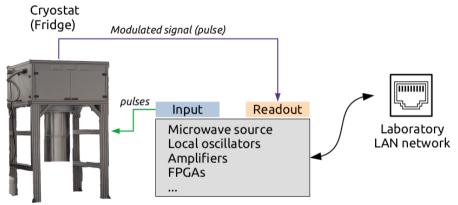
Qibojit


- Supports CPU, GPU and multi-GPU.
- NVIDIA and AMD GPUs.
- Reduced memory footprint.

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks [arXiv:2203.08826]


Qibo vs other libraries

Benchmark library: https://github.com/qiboteam/qibojit-benchmarks [arXiv:2203.08826]

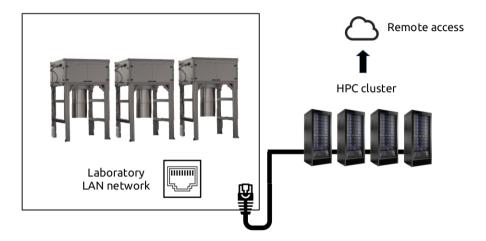


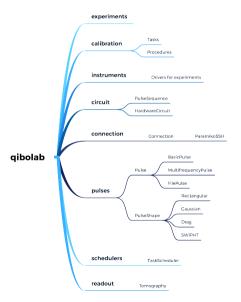
Quantum hardware control

Software control challenges

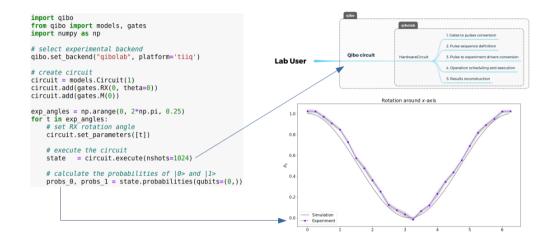
Software control challenges

Experimental Devices


Qibolab deployment



Software control challenges


Introducing qibolab

Qibolab key features:

- Create custom experimental drivers for lab setup.
- Platform agnostic layout.
- Deploy **Qibo models** on quantum hardware easily

Example

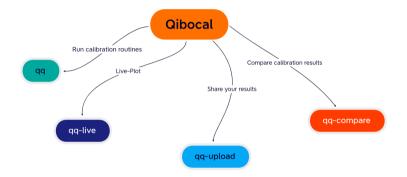
• AWG:

- Tektronix (e.g. AWG5204, AWG70000A)
- AlazarTech boards (e.g. ATS9371)
- QuickSyn
- Rigol (DC 5072)
- QBlox cluster
- Zurich Instruments
- Quantum Machines
- FPGA boards:
 - QICK: RFSoC

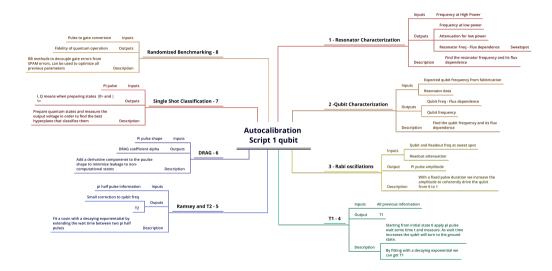
Development roadmap:

- Qibo already provides a prototype approach based on AWG-like instruments.
- We are working on production control hardware based on FPGA boards.

Quantum calibration software

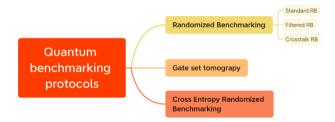

We are developing a new tool called Qibocal to perform qubits calibration in Qibo using Qibolab as the main driver.

The main features are:


- Platform agnostic approach
- Launch calibration routines easily
- Live-plotting tools

- Live-fitting tools
- Save and share results
- Autocalibration

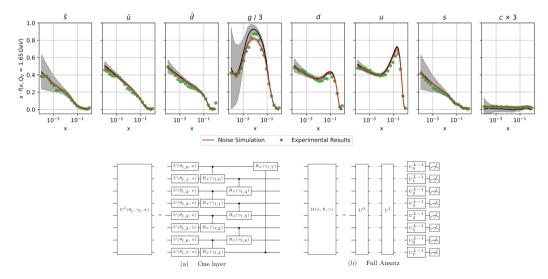
Qibocal: implementation



Live plotting and automatic calibration

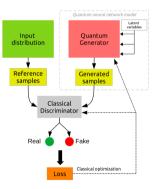
ocal Reports				
ane malang maray	2022-10-18-000-andrea-pasquale			
annary actions essenter Spectroscopy ette and Plase in Province	Pedators Gla Ban data: 2023 /0-16 San time (JTC) 064-30 Martine (JTC) 064-39			
old Pulse Length title s Yine	Summary			
	in the table below we show the libraries and respective versions used in 2022-10-18-000-andrea-pasquale.			
	Library Version			
	nongy 1.23.4			
	abo 0.1.8 about 0.0.1.6vt			
	aboal 0.0.1.dev0 abolab 0.0.1.dev6			
	Actions			
	Please Ped below data generated by actions:			
	Resonator Spectroscopy			
	MSR and Phase vs Frequency - Qubit 2			
	HIN HIN HIN HIN HIN HIN HIN HIN	FAIL 10 10 10 10 10 10 10 10 10 10		
	MSR vs Time - Qubit 2			

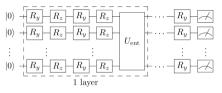
Quantum hardware we need to compute the gates error behavior. In the current state-of-the-art this is computed using Quantum benchmarking protocols.

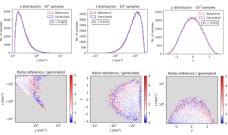


In Qibocal we are currently developing a suite for the execution of the latest QBP available.

Applications in HEP

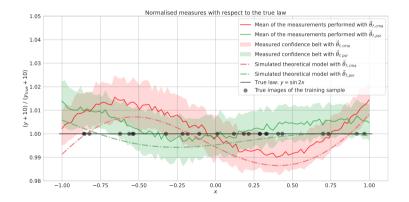

Determination of parton distribution functions using QML


A. Salinas et al, Determining the proton content with a quantum computer, PRD, 2011.13934.



MC event generation using Style-qGAN

C. Bravo-Prieto et al, **Style-based quantum generative adversarial networks for Monte Carlo events**, Quantum, 2110.06933.

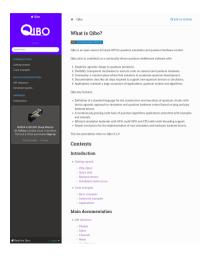


Gradient descent on a QPU

M. Robbiati et al, **A quantum analytical Adam descent through parameter shift rule using Qibo**, ICHEP 2022 proceedings, 2210.10787.

Outlook

Outlook


Qibo accommodates different tasks:

- High performance quantum simulation: qibojit
- Hardware control: qibolab
- Hardware calibration: qibocal

Unique features in Qibo:

- 1 All modules are open source.
- Ø Modular layout design with possibility of adding
 - new backends for simulation
 - new platforms for hardware control
- Community driven effort

https://github.com/qiboteam/qibo https://qibo.readthedocs.io

