

Updates from the SQMS general meeting at Fermilab (sensing)

Ambra Mariani

INFN, Sezione di Roma, P.le Aldo Moro 2, I-00185, Rome, Italy

SQMS-Italia Meeting December 15-16, 2022 - Padova, PD

Three focus areas:

Three focus areas:

1): Understanding and mitigating decoherence in superconducting quantum devices & sensors;

See A. Cruciani's talk

Three focus areas:

1): Understanding and mitigating decoherence in superconducting quantum devices & sensors;

2): Deploying 2D/3D QPUs with first applications: 2D processors & algorithms;

Three focus areas:

1): Understanding and mitigating decoherence in superconducting quantum devices & sensors;

2): Deploying 2D/3D QPUs with first applications: 2D processors & algorithms;

3): Quantum sensing and high-coherence devices for fundamental physics.

Motivation

- Searching for new physics using quantum sensors
 - Focus primarily on dark matter (axions, dark photons), gravitational waves;
- Improvements to ultra-high precision physics with high quality factor (Q) cavities;
- Fundamental quantum physics demonstrations using SQMS tools.

Physics and quantum sensing in SQMS

- Slightly different than materials and devices many milestones assigned to a single member institution instead of multiple institutions;
- Leveraging SQMS facilities and equipment in Superconducting Radio Frequency (SRF) cavities & qubits (mostly superconducting but also trap) to search for new physics;
- In some cases can even use existing setups from other SQMS experiments to search for new physics in first demonstrations, then build on / expand from there.

Dark matter vs. new particle searches

New light particles are theoretically well motivated.

e.g.

- Axions (including the QCD axion) and axion like particles (ALPs);
- Dark photons.

For such light particles **two hypotheses** can be tested:

New particle:

 \mathcal{L}

 \supset

Axions?
ALPs?
Dark photons?

New degrees of freedom in the Lagrangian which interacts with Standard Model (SM) particles.

Dark matter (and new particle):

 \supset

Axions?
ALPs?
Dark photons?

New degrees of freedom exists, and in addition these degrees of freedom make up the dark matter (DM).

Basic search schemes

Light Shining through Wall (LSW):

New particles are produced in the emitter cavity and can travel to the receiver cavity, where they are converted into SM particles and can be detected.

A dark matter search:

The DM filled Universe is the emitter.

Focus	Major	Deliverables and Benchmarks	C	ent	er `	Yea	ar
Area	Activity	Denverables and Benchmarks	1	2	3	4	5
		DarkSRF implementation in dilution fridge					
		DarkSRF first results in quantum regime (10x current exclusion boundary)					
	(10) DarkSRF Milestones	DarkSRF results with Q > 1e11 (100x current exclusion boundary)					
		DarkSRF results with high Q plus phase readout (1000x current exclusion boundary)					
Quantum Physics		DarkSRF with Q ~1e12 and phase readout (10000x current exclusion boundary)					
and Sensing		Axion search with multimode high Q cavity in quantum environment scheme design phase (two cavity setup) and co-design feedback to focus area 1					
		Axion Search scheme first implementation in two cavity setup					
		Prototype cavity with frequency matching for single-cavity axion search and co-design feedback to focus area 1					
	Milestones	Axion Search scheme first implementation in one cavity setup					
		Lab Axion search downselect (1 versus 2 cavity)					

Focus	Major	Delivorehles and Denehmanles	C	ent	er	Ye	ar
Area	Activity	Deliverables and Benchmarks	1	2	4	5	
		DarkSRF implementation in dilution fridge					
		DarkSRF first results in quantum regime (10x current exclusion boundary)					
	(10) DarkSRF Milestones	DarkSRF results with Q > 1e11 (100x current exclusion boundary)					
		DarkSRF results with high Q plus phase readout (1000x current exclusion boundary)					
Quantum Physics		DarkSRF with Q ~1e12 and phase readout (10000x current exclusion boundary)					
and Sensing		Axion search with multimode high Q cavity in quantum environment scheme design phase (two cavity setup) and co-design feedback to focus area 1					
		Axion Search scheme first implementation in two cavity setup					
		Prototype cavity with frequency matching for single-cavity axion search and co-design feedback to focus area 1					
	Milestones	Axion Search scheme first implementation in one cavity setup					
		Lab Axion search downselect (1 versus 2 cavity)					

1) Experiments searching for dark photons

Focus	Major	Deliverables and Benchmarks	C	ent	er	Ye	ar
Area	Activity	Denverables and Benchmarks	Center Y	4	5		
		DarkSRF implementation in dilution fridge					
		DarkSRF first results in quantum regime (10x current exclusion boundary)					
	(10) DarkSRF Milestones	DarkSRF results with Q > 1e11 (100x current exclusion boundary)					
		DarkSRF results with high Q plus phase readout (1000x current exclusion boundary)					
Quantum Physics		DarkSRF with Q ~1e12 and phase readout (10000x current exclusion boundary)					
and Sensing		Axion search with multimode high Q cavity in quantum environment scheme design phase (two cavity setup) and co-design feedback to focus area 1					
		Axion Search scheme first implementation in two cavity setup					
		Prototype cavity with frequency matching for single-cavity axion search and co-design feedback to focus area 1					
	Milestones	Axion Search scheme first implementation in one cavity setup					
		Lab Axion search downselect (1 versus 2 cavity)					

2) Experiments searching for axions and axion-like particles

Focus	Major		(Cent	ter	Yea	ar
Area	Activity	Deliverables and Benchmarks	1	2	3	4	5
		Commissioning of mK testbed with capability to generate Tesla-scale fields					
		First measurements of high Q cavities in Tesla-scale magnetic fields					
Quantum	(12) High	Demonstrate Q > 1e6 in SRF cavities in Tesla-scale magnetic fields in quantum regime for axion searches					
Physics and	Magnetic Field	Feedback to focus area 1 for materials needs for high coherence in high magnetic fields and focus area 2 for qubits					
Sensing	Matter Search	Axion Dark matter searches coupling best coherence cavities and qubits in low and high magnetic fields					
		Design of Axion dark matter search with AC magnetic field					
		Dark matter axion downselect in various frequency bands to assess sensitivity to QCD axion in the multi-GHz band					

3) Experiments searching for axions and axion-like particles as dark matter candidates

Focus	Major		C	ent	er \	Year
Area	Activity	Deliverables and Benchmarks	1	2	3	4 5
		Design cavity geometry for single particle Penning trap				
	()	Prototype single particle trap cavity and squids, and co-design feedback to technology thrust				
Quantum Physics	Particle Penning Trap	Test optimized single particle cavity with coupled squid				
and Sensing		Study the sensitivity of next generation electron magnetic moment measurements				
	(14) Other Physics Search	Deliver theoretical study of sensitivity to dark radiation				
	Schemes with QIS Methods	Deliver assessment of methods to search for gravitational waves with state of the art SQMS cavities				

4) Experiments searching for other physics

Focus	Major		C	ent	er !	Year
Area	Activity	Deliverables and Benchmarks	1	2	3	4 5
		Design cavity geometry for single particle Penning trap				
	()	Prototype single particle trap cavity and squids, and co-design feedback to technology thrust				
Quantum Physics	Particle Penning Trap	Test optimized single particle cavity with coupled squid				
and Sensing		Study the sensitivity of next generation electron magnetic moment measurements				
	(14) Other Physics Search	Deliver theoretical study of sensitivity to dark radiation				
	Schemes with QIS Methods	Deliver assessment of methods to search for gravitational waves with state of the art SQMS cavities				

DOE mid-term review due in February 2023

4) Experiments searching for other physics

New particles searches in SQMS

DarkSRF

Dark photon search using superconducting radiofrequency (SRF) cavities ——> LSW experiment.

SM photons do not penetrate the superconducting wall, but dark photons can!

- 1.3 GHz high quality factor (Q~10¹⁰) SRF cavities in LHe (1.4 K);
- Resonant cavities increase the number of photons on the emitting side and enhance the probability of conversion of dark photons to visible ones on the receiver side.

DarkSRF - Results and perspectives

Demonstrated unprecedented sensitivity to dark photon using two 1.3 GHz SRF cavities in LHe:

Exclusion boundary pushed up to 3 orders of magnitude below the state of the art.

A. Grassellino et al., "First results of DarkSRF: a dark photon search using SRF cavities", QIS for Fundamental Physics Workshop, Aspen Center for Physics (2020)

SQMS DarkSRF Collaboration, "A new exclusion for dark photons from an SRF cavity-based search", in progress.

Next proposed steps:

- 2.6 GHz SRF cavities in dilution refrigerator (DR) at mK temperature (quantum regime);
- Improved cavity design (higher Q);
- Phase readout.

Expected exclusion boundary: 10-13 in the higher sensitivity mass region.

DarkSRF is also sensitive to ultra-light millicharged particles and millicharged DM.

LSW-type axion searches - Two cavities with static B-field

Probe axion-photon couplings

Produced axions will pass through the cavity walls and propagate to the conversion region, where some axions will convert back to photons.

R. Janish et al., Phys. Rev. D 100, 015036 (2019)

PROPOSED EXPERIMENT:

- Two high-Q SRF cavities;
- Conversion region containing a confined magnetic field in the form of a superconducting, broken-toroid magnet.

With this approach neither SRF cavity is subject to large magnetic fields and neither suffers a degradation of Q-factor.

LSW-type axion searches - Two cavities with a pump mode

Alternative approach: replace the static B-field with an oscillatory B-field inside the receiver cavity (pump mode of the cavity).

Avoid the introduction of the conversion region, simplifying the design.

- Axion is produced from the emitter with a frequency equal to the sum or difference of the two active modes of the cavity, $\omega_{\pm} = \omega_1 \pm \omega_0$;
- The axion may in turn produce a photon in the receiver with frequencies equal to $\omega_{\pm} \pm \omega_{0}$, in which the combination that yields ω_1 can be resonantly produced.

A. Berlin et al., arXiv:2203.12714 (2022)

Dark matter searches in SQMS

Dark photon dark matter searches

Dark photon dark matter (DPDM) search with 1.3 GHz cavity with Q~10¹⁰ in DR.

Deepest exclusion limit to wavelike DPDM by an order of magnitude.

Next proposed steps:

- Tunable SRF cavities (5-8 GHz) for DPDM searches;
- Combine SRF cavity technology and qubit-based photon counting to reduce the noise floor below the Standard Quantum Limit (SQL) → increased sensitivity.

Axion dark matter searches with haloscopes

Axion to photon conversion inside RF cavities in a strong magnetic field.

- The feeble EM field oscillating at the axion mass can be detected with a resonator tuned to the same frequency (\sim GHz \rightarrow m_a \sim µeV).
- Since the resonant frequency is typically controlled by the inverse geometric size of the detector, probing much lighter axion masses requires prohibitively large cavities.

Axion dark matter searches with haloscopes - QUAX

QUAX (QUest for AXions) search for axion dark matter with RF copper cavity with dielectric shells.

- $Q_0 \sim 9 \times 10^6$;
- B_{ext} ~ 8 T.

Two weeks run @4 K probed axion masses not accessible to other running experiments.

Next proposed steps:

- Cavity in DR;
- Work on integration of high-Q SC cavity.

R. Di Vora et al., Phys. Rev. Appl. 17, 054013 (2022) C. Braggio et al., presented at PATRAS2022

Axion searches - High-Q cavities in a static B-field

Standard haloscope approach: Typical Q~10⁴-10⁵, but sensitivity scales as \sqrt{Q} .

S. Posen et al., arXiv:2201.10733 (2022)

First measurements of high-Q cavity in tesla scale magnetic field:

- Nb₃Sn cavity;
- 6 T magnetic field;
- liquid helium (4.2 K).

Next proposed steps:

- Further optimizations with cavity treatment, magnetic field alignment, and geometry optimization.
- Implement tuning.
- Explore other superconducting materials like commercial High Temperature Superconductor (HTS) tapes.

Axion dark matter searches with up-conversion

Oscillating magnetic field in a resonant SRF cavity

Axion transfers power from driven mode to quiet mode.

A. Berlin et al., Phys. Rev. D 104, L111701 (2021)

A photon at frequency ω_0 ~GHz is up-converted by axion DM into a nearly degenerate photon of frequency ω_1 = ω_0 + m_a.

Enhanced signal for light axions: $GHz/m_a >> 1$ and $Q\sim10^{11}$

A quantum network of haloscopes

A network of microwave cavities will experience a coherent axion signal if the size of the network is less than the axion coherence length.

Arrays of entangled sensors can, in principle, accelerate the search for DM.

Proof-of-principle experiment with two mechanical oscillators:

- Squeezed vacuum + linear optics to generate entanglement;
- Simultaneous benefits from
 - 1. quantum correlations of input radiation (global reduction of noise);
 - 2. classical correlations of DM field (boosted signal).

A. J. Brady et al., PRX QUANTUM 3, 030333 (2022)

Other searches in SQMS

High frequency gravitational waves searches

prepared EM field $\sim \cos \omega_0 t$ $(frequency \sim GHz)$

gravitational wave $\sim \cos \omega_{\rm GW} t$ (frequency ~ astro/cosmo source)

Microwave cavities can also be used to detect highfrequency gravitational waves (GWs).

A gravitational wave interacts with a static external Bfield, resonantly exciting a cavity mode.

A. Berlin et al., arXiv:2112.11465 (2021)

Conclusions

What still needs to be done to reach Appendix 13 deliverables for the DOE mid-term review? What are the long term goals of SQMS in the quantum sensing focus area?

- DarkSRF: finalize DR implementation, increase Q, implement phase readout;
- Commission DR with 10 T magnet;
- For all cavities currently in design phase (Multimode axion cavities, DPDM plunger cavity, HTS cavity):
 - Procure cavities and design experiment layout;
 - Run searches;
 - Publish results;
- Work on cavity plus qubit based DPDM and axion DM searches.

Thank you for your attention!

All the materials of the SQMS Annual Meeting 2022 can be found at:

https://indico.fnal.gov/event/56576/timetable/ #20221018.detailed