

Update on Coalescence with Argonne v18

Small preface

The deuteron wavefunction

• There are multiple models for the deuteron wave function

Simplistic:

Single Gaussian

Experimental data ('50s):

Two Gaussian 🗸

• From pion field theory ('50s):

Hulthén 🗸

• From modern χ_{EFT} :

Argonne $v_{_{18}}$

The wave function

- cross terms
 BUT: Only fit to Φ²
- Fitting directly to φ gives much better fits (remove phase)
- Regardless of phase the cross terms vanish (all imaginary (?))

The Wigner functions

G3fit to ϕ^2 (G2 fit to ϕ very similar) However: peak height at (0,0) varies with the fit

G2 fit to φ^2 (worst fit)

The Wigner functions

G3fit to ϕ^2 (G2 fit to ϕ very similar) However: peak height at (0,0) varies with the fit

G2 fit to φ^2 (worst fit)

Deuteron Spectra

- Deuteron spectra using the different fits
- Results depend a lot on the initial fit function

Deuteron Spectra

- Deuteron spectra using the different fits
- Results depend a lot on the initial fit function

Next steps:

- Bhawani is doing the calculation as well
- Used improved fit function with 3 Gaus but removed (cr²+a) term

Improved fit function

$$F(r) = N_1 e^{-br^2} (cr^2 + a) + N_2 e^{i\alpha} e^{-f(r-m)^2} + N_3 e^{i\alpha} e^{-dr^2}$$

- Removing two fit parameters improves fit quality
- Makes calculation easier
- However: no imaginary cross-terms

Improved fit function

$$F(r) = N_1 e^{-br^2} (cr^2 + a) + N_2 e^{i\alpha} e^{-f(r-m)^2} + N_3 e^{i\alpha} e^{-dr^2}$$

- Removing two fit parameters improves fit quality
- Makes calculation easier
- However: no imaginary cross-terms
- Wigner function similar to previous ones
- BUT: lower peak -> more structure outside of peak

Improved fit function

$$F(r) = N_1 e^{-br^2} (cr^2 + a) + N_2 e^{i\alpha} e^{-f(r-m)^2} + N_3 e^{i\alpha} e^{-dr^2}$$

- Removing two fit parameters improves fit quality
- Makes calculation easier
- However: no imaginary cross-terms
- Wigner function similar to previous ones
- BUT: lower peak -> more structure outside of peak

BACKUP

The wave function

$$F(r) = \underbrace{N_1 \exp(-br^2)(cr^2 + a) + N_2 \exp(i\alpha) \exp(-f(r - m)^2) + N_3 \exp(i\alpha) \exp(-dr^2)}_{}$$

 $\mathsf{G}_{\scriptscriptstyle 2}$

 G_3

- Adding complex phases cancels cross terms
- BUT: Only fit to φ²
- Fitting directly to φ gives much better fits

The wave function

$$F(r) = N_1 \exp(-br^2)(cr^2 + a) + N_2 \exp(i\alpha) \exp(-f(r-m)^2) + N_3 \exp(i\alpha) \exp(-dr^2)$$

 $\mathsf{G}_{\scriptscriptstyle 2}$

- Adding complex phases cancels cross terms
- BUT: Only fit to Φ^2
- Fitting directly to Φ gives much better fits

G3fit to phi²

Zoomed in