
COMIMAC - MANGO Integration

David Marques F. di Giambattista

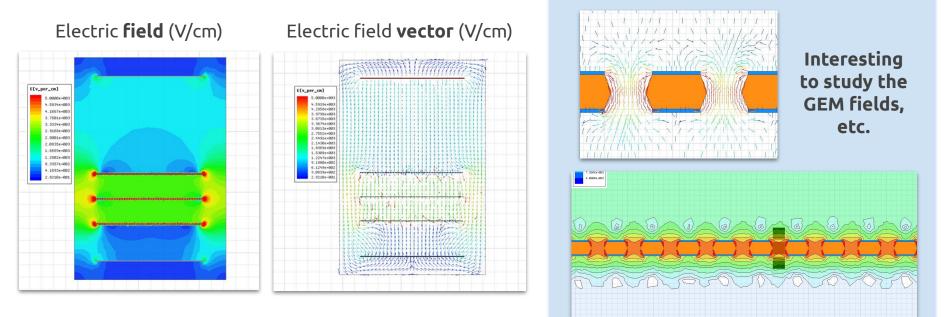
COMIMAC simulation - Interest

- → Grenoble measurements in a nutshell:
 - Many questions regarding the experimental setup accuracy.
 - Some more serious inconsistencies between data
 - Quenching factor (QF) roughly measured
 - Dependency of QF with drift field hypothesized
 - We didn't have time to properly make this measurement
 - Many questions regarding the dependency of QF with the overall experimental setup
 - Best way to test it → Bring MANGO to Grenoble and couple it with their setup
 - Mechanical questions:
 - Can we get a couplable detector vessel? → Yes, Elisabetta and Cesidio working on it.
 - ◆ Do we need a field cage? → *Maxwell simulation can help!*

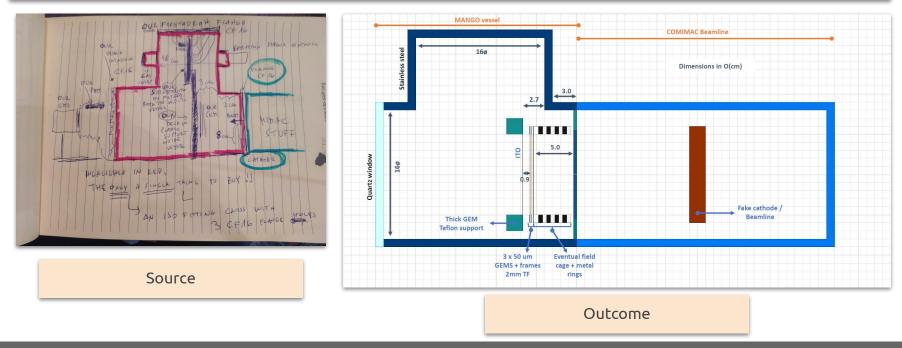
GS

Maxwell - What for?

Given a setup with **different materials** and **voltages** applied, Maxwell calculates the **electric** \rightarrow **field** within a defined region. The outputs can be:


Electric **field** (V/cm) E[v_per_cn] E[v_per_cn] 5.00004+00 4.5834e+003 9.5919++00 9.2858e+00 4.1667e+083 3.9795e+00 3.7501e+003 3.6735e+003 3. 33394-003 3.3674e+00 3.0613e+00 2.9168e+083 2 25524400 2.50016+003 . NW05e+R0 2.0835e+003 2.1450e+003 1.8369e+003 1.65594+003 1.5308e+003 1.2502e+003 1.22¥7e+883 8.3357e+002 0.1060e+002 6.1299e+002 3.0639e+002 4.16934+002 I. MAR .8210e-001 8210e-00 CHANNA MATHERANDAN

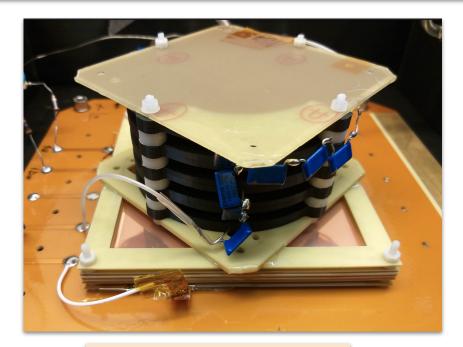
Electric field **vector** (V/cm)

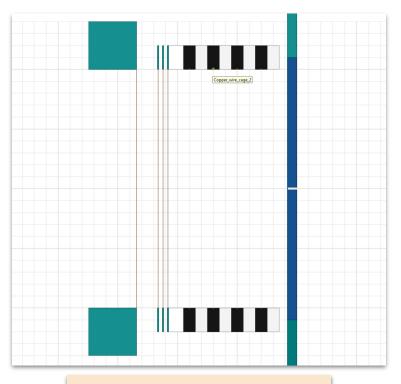

Maxwell - What for?

- CZGNO G S
- → Given a setup with different materials and voltages applied, Maxwell calculates the electric field within a defined region. The outputs can be:

COMIMAC simulation - Rational

- From Elisabetta's schematic and Grenoble's people designs, I made a schematic of the COMIMAC-MANGO integration in Maxwell.
- The simulation consisted in studying **different drift fields** <u>with</u> and <u>without</u> field cage

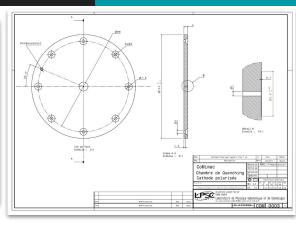


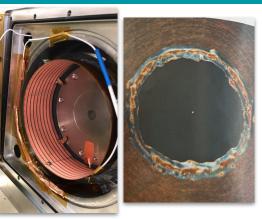

GS

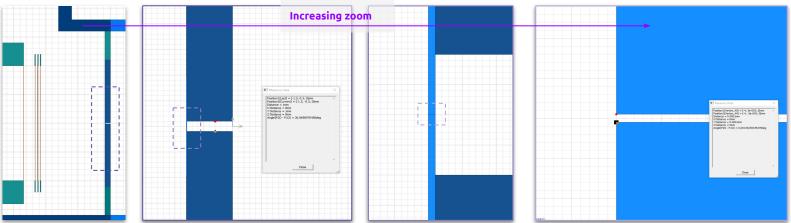
COMIMAC simulation - Rational

• For the field cage, I mimicked our setup.

Source

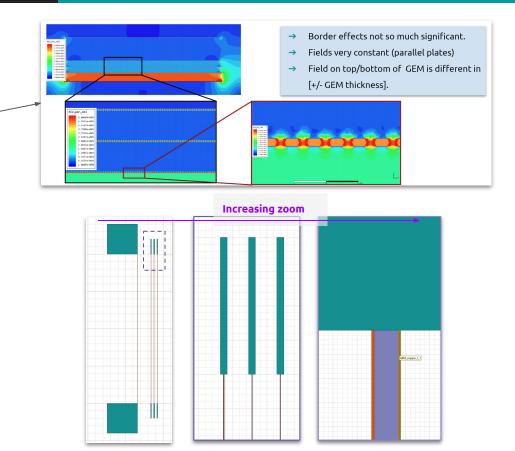

Outcome


COMIMAC simulation - Simplifications



1. Cathode

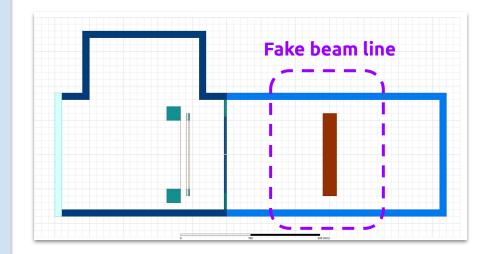
a. It is not super clear the whole design around the cathode part:
 It's a O(10) um sheet* with a
 1 um hole in the middle that separates gas from vacuum.


*Thanks Flaminia for the discussion

COMIMAC simulation - Simplifications

1. GEM

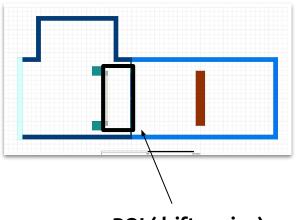
- a. It was observed during the previous simulations that the O(100) um holes <u>do not</u> affect the macroscopic properties of the electric field.
- But simulating O(10³) holes
 increases a lot the computing
 time.
- c. I <u>simplified the GEMs</u> to two flat copper surfaces separated by kapton.



COMIMAC simulation - Simplifications

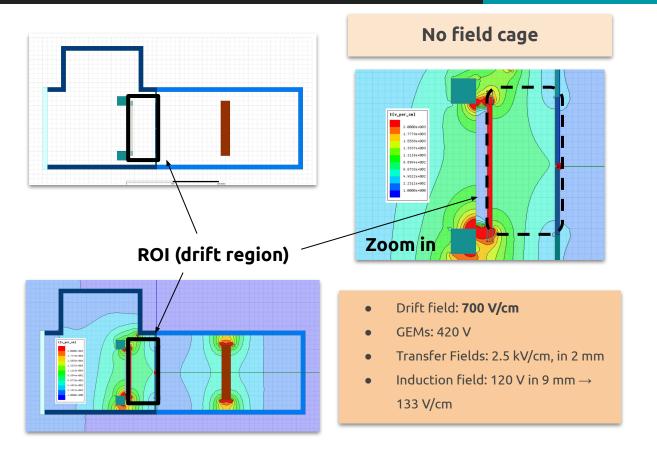
1. Beamline

- a. Since we are not very interested in the
 MIMAC part, I just designed a huge HV
 to help <u>closing the field lines</u>.
- Also the electric field in that region is
 "irrelevant" as we're just interested in
 the particle beam itself.
- c. If necessary, I can also design more in detail the beam line electric fields (I would require more details from the Grenoble people though).

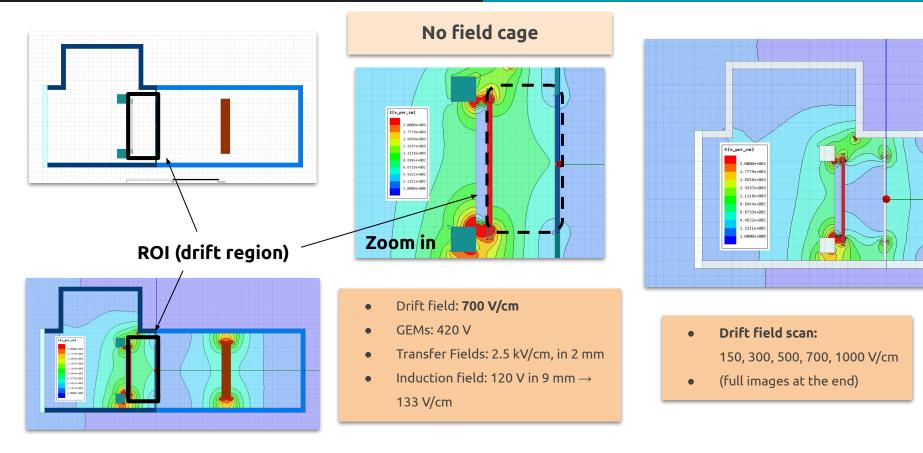

Results

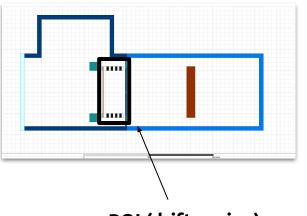
& Conclusions

David Marques

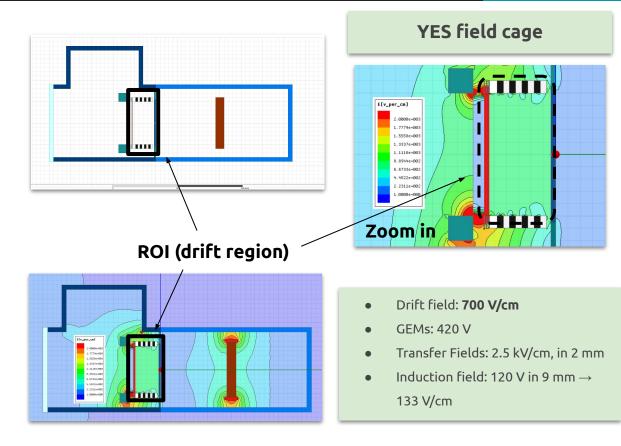

CYGNO collaboration meeting - 19-20 December 2022 - Rome, Italy

No field cage


ROI (drift region)

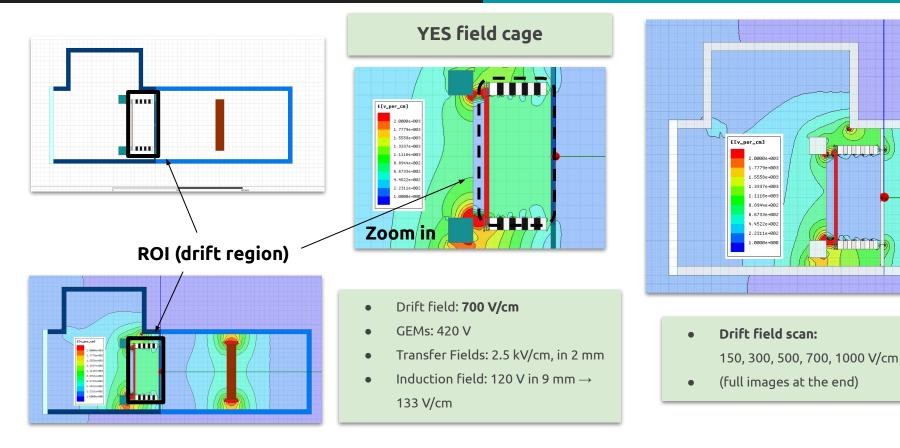

G S

S

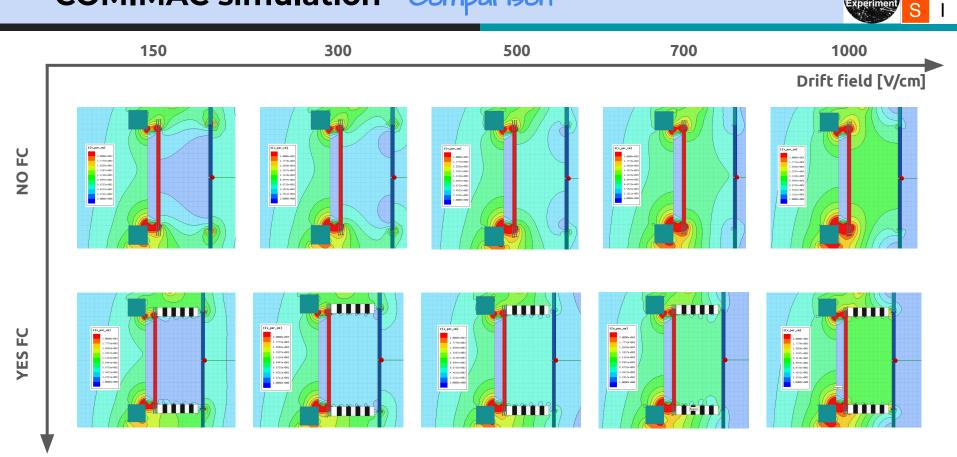


YES field cage

ROI (drift region)



David Marques

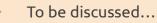

G S

S

COMIMAC simulation - Comparison

G S

iNO riment


COMIMAC simulation - Conclusion

CZGNO G S Experiment S I

- → <u>Qualitative</u> verification of the need of a field cage performed using a Maxwell simulation.
 - Something more quantitative could be performed if necessary.
- → In my *opinion*, a <u>field cage is necessary</u>. Reasons:
 - There are already some uncertainties on their experimental setup. Introducing another source of uncertainty could negatively impact even more the final measurement.
 - Thinking in the **hardware**, I think that the inclusion of a field cage (FC) it's not hard:
 - We just need to use the **old small MANGO FC**. (or remove the elongation of the FC put by Roberto to go from 5 to 15 cm drift) and **unmount our cathode** since they already have it.
 - If we cannot connect the last FC ring to the cathode to make the voltage divider, we can also (probably) directly connect it to one of the feedthroughs.

COMIMAC simulation - A few questions

- → Considering the **voltages used previously**, will we be able to reach a cathode voltage for this?
 - We remember that the **cathode could only reach 3kV**(?)
 - I used 420V on the GEMs because this would be required at least for the electron calibration at energies
 O(1) keV.
 - If we lower the voltages to 350 V (enough the see the He ions), we reach a total of 1kV. Summing the transfer fields, we are at 2kV. If the maximum voltage of the cathode is 3kV, we have available 1kV for 5 cm drift, leaving to a maximum drift field of ~200 V/cm

	Higher drift field run							
Helium in sou	ce							
Run number	Hour	Beam energy (keV)	Cathode voltage (kV)	Ion effective energy (keV)*	Focalization voltage (kV)	Peaks (A	DC counts)	comments
	16h58	27.19	2.81	30		0 593	5 -	
	17h0X	Junk	Junk	Junk	Junk	Junk	Junk	
	17h05	22.19	2.81	25		0 488	3 -	
	17h08	17.19	2.81	20		0 374	l -	Evertyhing using 810/810/2810, ie, E = (2810-810)/5 = 400 V/cm
	17h12	12.19	2.81	15		0 258	3 -	
	17h15	7.19	2.81	10		0 144	L -	
	17h17	5.19	2.81	8		0 10	-	
	17h22	3.19	2.81	6		0 59	-	

GS

...A new and

recent idea...

TUNL facilities - Neutron beam

Facilities | Triangle Universities Nuclear Laboratory

Calendar:

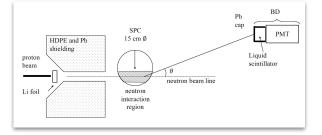
https://calendar.google.com/calendar/u/0/embed? src=2esueavoe9rp28f784qvutulu8@group.calend ar.google.com&ctz=America/New_York Free from March...

- Is there **another place** where a **similar measurement** could be performed?
- What about **<u>TUNL</u>**?
- Let's discuss...

- CZGNO G S Experiment S I
- → Recently, a <u>different location</u> was thought to be a possibility: the <u>TUNL facilities</u> in North Carolina State University, Duke. In a few words:
 - Neutron beam
 - Neutron scatter -> Nuclear recoil -> QF measurement
 - Other sensitivity studies with very low $(10^{-1} 10^{0} \text{ keV}_{nr})$ nuclear recoils
 - **TUNL provided detector characteristics:** (from private communication from Philippe Gros, NEWS-G collab.)
 - <u>Neutron tagging</u> with *backing detectors*
 - Closed kinematics -> Precise measurements
 - <u>Trustworthy beam</u>
 - Trigger system
 - **Experience** with this type of measurements (NEWS_G SpherePC QF measurement)

https://arxiv.org/pdf/ 2109.01055.pdf

No money required -> Only <u>co-authorship</u> in resulting paper.

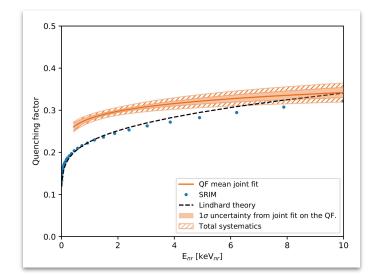

I studied the NEWS-G paper to understand if it possible to bring "MANGO" to their facilities

TUNL facilities - CYGNO/MANGO feasibility

Hardware:

- → A priori, **easy to couple** with MANGO (it's a beam line).
- Backing detectors to measure scattered neutron's
 energy and angle -> Closed kinematics -> nuclear recoil
 energy deposited.
 - They worked with E_{nr} = [0.74 6.8] keV_{nr}
 - Enough for us? Need of different target or more beam power?
- → They have **data acquisition system.**
- \rightarrow Monitor interaction between proton and target ("t₀").
- Neutron beam energy measured *in situ* with ToF
 between **n** and γ (PSD discrimination).
- → Neutron energy in range [40-700] keV (target dependent). Not sure of beam's maximum energy...
- Target and beamline shielded to reduce background.

Proton interact with LI target generation neutron beam. Scattering angle measured with BD.


 $p + {^7Li} \longrightarrow n + {^7Be} + \gamma$

Software:

- → **Trigger on BDs** -> Camera free running mode?
- → ToF between target interaction and BD -> **reject background.**
- → Runs take O(10) hours.
 - Long **stability** required.
 - NEWS-G performed **continuous gain monitor** with ⁵⁵Fe.
- → NEWS-G thorough analysis can help us identifying signals and calculating QF. (*Ph.D. thesis available to full details*)
- → Good for us to **test our nr. vs. er. capabilities.**
- → Beam characteristics well defined.
- → Caveat:
 - We cannot choose recoiling nucleus (He, C and F signals mixed).
 - Interaction rates simulated with Geant4 could be of

interest for better analysis.

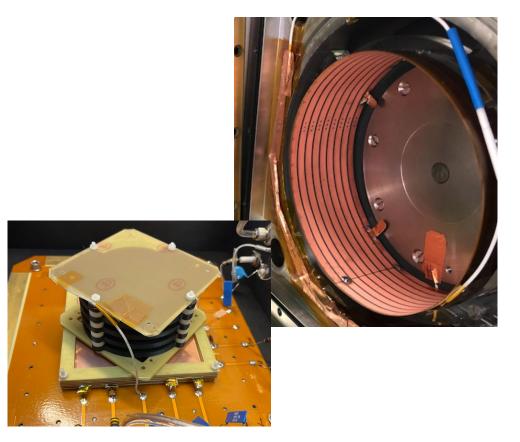
NEWS-G final results.

(To give an idea of achievable accuracy)

GS

Thank you for

your attention!


The CYGNO Project counts with the collaboration of several international researchers coming from:

Backup & more details

COMIMAC simulation - Details

- Continuing on the feedthroughs topic, they use this very good FC, which is the sort of the whole "tube" itself.
 - "About field cage, it's a Kapton pipe with copper printed conductor and a resistor chain. The diameter is about 120 mm and the cage is centered in the pipe by a transparent ring made of PMMA" -Grenoble people
 - If removable, could be eventually placed in our vessel... to be confirmed
- If not, I propose we use the old setup with the new support and without the cathode.

S

Ţ.