

Feasibility of a directional solar neutrino measurement with CYGNO

S.Torelli - E. Baracchini

CYGNO Collaboration meeting 2022 - Roma

Solar neutrino with CYGNO/INITIUM

- Neutrino from the sun can be object of study with large TPC through νe^- scattering Seguinot, Jacques & Ypsilantis, Thomas & Zichichi, Antonino. (1992). A high rate solar neutrino detector with energy determination.
- Directional detection \rightarrow capability of discriminating particles from different sources through directionality

Much stronger signature than energy spectrum

Peaked distribution over flat bkg	VS	Exponential Signal over exponential bkg

With a CYGNO PHASE 2 detector of 30 m^3 active volume we expect: ~ 90 events in 3 y

KASHIWA DARK MATTER SYMPOSIUM - 2022

Energy response and resolution

• Study of linearity and energy resolution overground performed with X-Rays at different energies

 How tracks appear in our detector:

- Data shows good linearity in [6-35] keV
- Energy resolution ~constant at 13% in same range

MC developed taking into account detector effect:

• Data in agreement with the simulation for E > 6keV

KASHIWA DARK MATTER SYMPOSIUM - 2022

Directionality of low energy electron recoil

Data sample

With the new digitization code optimized, I produced samples of:

- 10.000 tracks per energy
- Isotropic direction
- Drift distance uniform from 10 to 40 cm
- Random x-y position with vignetting included
- Energies of 16 18 20 22 24 28 32 36 40 50 60 70 keV

N.B. Some optimization of the parameters is needed to reconstruct 100 keV

• Possibility of retrieving the original impact point since the GEANT xyz are saved

Linearity and energy resolution

Directionality algorithm in a nutshell

• Algorithm adapted from X-ray polarimetry:

"Measurement of the position resolution of the Gas Pixel Detector" Nuclear Instruments and Methods in Physics Research Section A, Volume 700, 1 February 2013, Pages 99-105

- First part of the algorithm: searching for the beginning of the track with
 - Skewness
 - Distance of pixels from barycenter (farthest pixels)
 - Selection of a region with fixed number of points N_{pt}
- Second part of the algorithm aims to find the direction:
 - Track point intensity rescaled with the distance from the interaction point: $W(d_{ip}) = exp(-d_{ip}/w)$
 - Direction taken as the main axis of the rescaled track passing from the interaction Point
 - Orientation given following the light in the Pixels
- Two parameters of the algorithm: N_{pt} and w

Results on angular and impact point resolution

- Parameters of the algorithm N_{pt} and w not known a priori \rightarrow optimized with a scan of ang res vs them
- Parameters for which the angular resolution is on minimum used

• Angular resolution defined as the sigma of the distribution $\theta_{meas} - \theta_{true}$ (same for IP)

Solar neutrino sensitivity

Bayesian framework

• Sensitivity studies performed with the Bayesian framework:

- Prior probability: a priori knowledge of the signal and background probability distribution, it will be assumed possoanian for the background and flat for the signal
- Likelihood: probability of observing the data given μ_s and μ_b , calculated as the product of the probability of $n_{i,j}$ events in the i, j bin with expected value $\lambda_{i,j}$

 Normalization factor: difficult to estimate a priori, it will be calculated by integrating the numerator distribution with a Markov-Chain Montecarlo based algorithm (posterior must be nomalized to 1)

Resolution used and assuptions

• For the templates generation ($\lambda_{i,j}$ information) the energy resolutions from the data and the angular resolution from the MC have been used

- Assumptions:
 - Same resolution in both theta (on the GEM plane) and phi (respect to the perpendicular to the GEM plane)
 - Isotropic gamma background

Signal templates production

- Random neutrino energy according to the pp solar flux
- $\cos \theta$ value according to the differential cross section
- Calculation of the electron energy
- Smearing of the energy and angle

$$T'_{e}(\theta) = \frac{2E_{\nu}^{2}m_{e}cos^{2}(\theta)}{(E_{\nu} + m_{e})^{2} - E_{\nu}^{2}cos^{2}(\theta)}$$

Background templates production

- Preliminarly the LIME bkg spectrum is used
- Random electron energy according to the bkg spectra
- θ value extracted from a random distribution
- Smearing of the energy and angle

Toy-MC production

- Toy-MC generated by:
 - Choosing an hypothesis of signal and background \bar{N}_{s} , \bar{N}_{b}
 - Extracting the actual values from a poissonian distribution n_s , n_b
 - Injecting n_s , n_b events, respectively from the signal and background templates, into an E-cos(θ) histogram

N.B. all the histograms have the same binning

- 50 toy MC for every combination of \bar{N}_s and \bar{N}_b have been generated:
 - $\bar{N}_b = 10, 100, 500, 1000, 10000$
 - \bar{N}_s = 5, 10, 20, 40, 60, 100, 200, 400, 600, 1000

 N_{σ} sensitivity

• Plot of $\frac{\bar{n_s} - 0}{\sigma}$ as a function of n_s under different background hypotheses

• Each point is the mean of the 50 MC generated and analyzed

The power of the directionality

- Plot showing the relative uncertainty on the pp flux as a function of the bkg/signal rate
- Higher level of background can be tolerated with good directionality performances
- Same of Borexino with 14x bkg more

Bkg studies for CYGNO_30

CYGNO_30 background

- Geant4 simulation of the main components of CYGNO_30 ongoing (75x CYGNO_04)
- Will be used to produce the bkg spectra for the sensitivity study
- The expected radioactivity values will be used
- Geometry is almost ready

- Lens and sensors not yet added
- Trying now to make interact particles with matter

Conclusions

- Neutrinos from the Sun can be studied with the optical TPC approach
- Linearity and E resolution on low energy electron recoils measured
- Simulation able to reproduce the electron data above 6 keV developed
- Angular resolution capability measured from the simulation
- Preliminary sensitivity study on solar pp neutrino shows feasible results
- Simulation of the background expected on CYGNO_30 in progress