LIME background simulation summary

CYGNO Collaboration Meeting – 19-20 December 2022

F. Di Giambattista

LIME data taking plan

LIME data taking underground just started. We plan to install increasingly thick shieldings to perform different measurements, in view of the final low background setup with full shielding. I simulated the expected background in the different shielding configurations

- No shield:
 - Periodic calibration with ⁵⁵Fe X-ray source, background measurement
- 6 cm of copper:
 - Background measurement, AmBe neutron source measurement, and periodic calibration
- 10 cm of copper:
 - Background measurement and periodic calibration
 - Measurement of the *fast neutron flux* underground
- 10 cm of copper + 40 cm of water:
 - Final test of LIME operation in the conditions of the future Dark Matter experiment

Background sources underground

• External background:

- Gammas and neutrons from the lab environment
 - Input spectra as measured in Hall C at LNGS:
 - Gamma flux measured by Sabre collaboration
 - Neutron flux from P. Belli et al., Il Nuovo Cimento A vol. 101, p. 959-966 (1989)
- Internal background:
 - Radioactivity of detector's materials
 - Input activity as measured by M.Laubenstein from our samples
 - Radioactivity of the copper shielding (main contributor ²¹⁰Bi)
 - Input activity as measured from OPERA dismissed copper
- Radiogenic neutrons (SOURCES4C + GEANT4)
 - (α,n) and spontaneous fission induced neutron spectra calculated from SOURCES4C used as input in GEANT4
- Cosmogenic neutrons: neutrons produced by muons interacting in the detector, to be assessed with MUSUN+GEANT4;

External gammas

Bate [events/kear]	No shield: 1.15(4)×10 ⁹ ER/yr in 0-3000 keV 1.13(4)×10 ⁹ ER/yr in 1-3000 keV 4.1(2)×10 ⁸ ER/yr in 1-20 keV	6cm copper: 9.5(3)×10 ⁶ ER/yr in 0-3000 keV 9.4(7)×10 ⁶ ER/yr in 1-3000 keV 2.3(2)×10 ⁶ ER/yr in 1-20 keV
10 ⁴ 0 50 100 150 200 250 300 350 400 450 500 Energy [keVee]	4cm copper: 2.68(6)×10 ⁷ ER/yr in 0-3000 keV 2.6(1)×10 ⁷ ER/yr in 1-3000 keV 6.2(3)×10 ⁶ ER/yr in 1-20 keV	10cm copper: 1.97(5)×10 ⁶ ER/yr in 0-3000 keV 1.95(9)×10 ⁶ ER/yr in 1-3000 keV 4.7(2)×10 ⁵ ER/yr in 1-20 keV

External neutrons

No shield:

1810(96) NR/yr in 0-3000 keV 1450(140) NR/yr in 1-3000 keV 350(40) NR/yr in 1-20 keV

4cm copper:

1020(15) NR/yr in 0-3000 keV 850(35) NR/yr in 1-3000 keV 410(9) NR/yr in 1-20 keV

6cm copper:

1190(30) NR/yr in 0-3000 keV 1000(80) NR/yr in 1-3000 keV 495(20) NR/yr in 1-20 keV

10cm copper:

1130 (30) NR/yr in 0-3000 keV 930(70) NR/yr in 1-3000 keV 550(20) NR/yr in 1-20 keV

Internal background

- Materials used to build LIME are **radioactive** and induce events in the gas
- The parts that were simulated are the cathode, the GEMs, the field cage rings, the resistors on top of the field cage, the acrylic box and the camera (body and lens separated)
- The copper shielding of different thicknesses was imported from the CAD design produced by C.Capoccia

Internal background

For each measured isotope and each isotope belonging to a detected natural chain I simulated the induced background in the detector

	Radionuclide	FieldRings	Cathode	Resistors	GEM	Acrylic	Camera body	Camera lens
	234Th	$<\!2,10E-01$	<2,10E-01	1,99E+01	1,63E-01	-	3,16E+00	4,22E+00
²³⁸ U chain	234mPa	<7,70E-02	<7,70E-02	2,19E+01	-	-	-	-
	226 Ra	<1,30E-03	<1,30E-03	2,16E+00	3,25E-02	<3,50E-03	8,13E-01	1,92E+00
	210Pb	-	-	5,94E+02	-	-	-	-
²³² Th chain	228Ra	<1,10E-03	<1,10E-03	3,50E+00	<3,09E-02	<5,00E-03	9,49E-01	$3,\!61E-\!01$
	228Th	<1,30E-03	<1,30E-03	3,36E+00	<1,56E-02	<4,50E-03	9,49E-01	$3,\!65E-01$
²³⁵ U chain	235U	<1,60E-03	<1,60E-03	3,37E-01	<1,58E-02		1,81E-01	$1,\!45E-\!01$
	$40\mathrm{K}$	<6,00E-03	<6,00E-03	<1,78E+00	<3,58E-01	<3,50E-02	8,59E-01	5,15E+01
	$137 \mathrm{Cs}$	<4,70E-04	<4,70E-04	<7,35E-02	<8,13E-03	-	4,07E-02	$<\!\!2,\!67E-\!02$
Other	60Co	<5,70E-04	<5,70E-04	<7,73E-03	<7,48E-03	-	<5,42E-03	<4,64E-02
	58Co	9,00E-04	9,00E-04	<3,10E-03	-	-	-	-
	Mn54	<4,30E-04	<4,30E-04	<3,27E-03	-	-	-	-
	La138	-	-	-	-	-	-	2,44E+00

Activities shown are in units of Bq/kg

8

Internal background

Main contributions from copper rings and cathode and resistors

7.403(6)×10⁶ (ER+NR)/yr in 0-3000 keV 7.317(6)×10⁶ (ER+NR)/yr in 1-3000 keV 1.534(1)×10⁶ (ER+NR)/yr in 1-20 keV

Main contributions from rings, cathode, resistors and GEMs

6.11(5)×10⁴ NR/yr in 0-3000 keV 6.11(5)×10⁴ NR/yr in 1-3000 keV 1.36(2)×10³ NR/yr in 1-20 keV

CYGNO Collaboration Meeting, Flaminia Di Giambattista, 20/12/2022

Camera background with shielding

No significant difference between different shielding configurations, we can not passively reduce the induced background

1(

Shield radioactivity

rame OPERA: ICP-MS Th [ppt] <15 U [ppt] <5

rame OPERA: HPGE sample: copper, magnet, OPERA weight: 10658.4 g live time: 2122026 s detector: GeMPI

radionuclide concentrations:

Th-232:			
Ra-228:	< 73 microBq/kg	<==	> < 1.8 E-11 g/g
Th-228	< 64 microBq/kg	<==>	< 1.6 E-11 g/g
U-238:			
Ra-226	< 0.10 mBq/kg	<==>	< 8.4 E-12 g/g
Pa-234m	< 1.9 mBq/kg	<==>	< 5.7 E-10 g/g
U-235	< 0.51 mBq/kg	<==>	< 9.0 E-10 g/g
K-40:	(0.4 +- 0.2) mBq/kg	<==>	(1.4 +- 0.7) E-8
Cs-137	< 28 microBq/kg		
	/		
Co-60:	(31 +- 13) microBq/	'kg	
	(0.05 · 0.02) -D- (b-		
Ag-108m:	(0.25 +- 0.03) mBq/Kg]	
D: 007.	(0.61 - 0.06) - 0.	(1	
B1-207:	(0.01 +- 0.00) MBC	ц <i>/</i> кg	
Ph 210	(7 ± 2) Pa/ka		
PD-210;	(/ +- 2/ by/Kg	J	

upper limits with k=1.645, uncertainties are given with k=1 (approx. 68% CL);

Ra-228 from Ac-228; Th-228 from Pb-212 & Bi-212 & Tl-208; Ra-226 from Pb-214 & Bi-214; U-235 from U-235 & Ra-226/Pb-214/Bi-214 g/g

Radiogenic neutrons

Shielding comparison

Background with water shielding

From gammas:

5.13(30)×10⁵ ER/yr in 0-3000 keV 5.09(30)×10⁵ ER/yr in 1-3000 keV 1.1(1)×10⁵ ER/yr in 1-20 keV

From neutrons: 2.3(2) NR/yr in 0-3000 keV 2.0(3) NR/yr in 1-3000 keV 1.0(1) NR/yr in 1-20 keV

External neutron background reduces to 2 NR/yr. The main source of background left is the internal one

15

Detector fiducialization

- Tracks close to the borders of the sensitive region can be excluded from image analysis
- From track shape we can retrieve the distance from the GEMs (diffusion dependent on z)

Detector fiducialization

No cuts: 7.34(3)×10⁶ ER/yr After cuts: **2.8(4)×10⁵** ER/yr

96% of events are excluded

No cuts: 6.1(1)×10⁴ NR/yr After cuts: 17(1) NR/yr left

3000

99.97% of events are excluded

Neutron background after cuts

Neutron flux measurement underground:

- Before cuts: 930 NR/yr above 1 keV (+61000 background NR/yr)
- After cuts: **772** NR/yr above 1 keV (+**16** NR/yr from other sources)
- After the fiducial cuts, we expect ~105 NR induced by external neutrons above 20 keV in 4 months of data taking (with 5 NR of background)

CYGNO Collaboration Meeting, Flaminia Di Giambattista, 20/12/2022

18

Summary table

Shielding	External		Internal		Shielding radioactivity		Total	
	ER/yr	NR/yr	ER/yr	NR/yr	ER/yr	NR/yr	ER/yr	NR/yr
No shield	1.13e9	1450	7.26e6	6.11e4	-	-	1.14e9	6.25e4
4cm copper	2.64e7	850	7.26e6	6.11e4	6.7e5	0	3.43e7	6.19e4
6cm copper	9.40e6	980	7.26e6	6.11e4	6.4e5	0	1.73e7	6.21e4
10cm copper	1.95e6	915	7.26e6	6.11e4	5.7e5	0	9.78e6	6.20e4
40cm water + 10cm copper	5.09e5	2.0	7.26e6	6.11e4	5.7e5	0	8.34e6	6.11e4

Conclusions

- A full simulation of the **expected background** sources at underground LNGS was done for the LIME detector
- First results from data taking are **consistent** with the predicted simulated rate (~30 Hz)
- The internal background is an issue for LIME, we need **radiopure materials** for the next phases of CYGNO
 - We can reduce its impact by **fiducializing** the sensitive volume
- The background induced by the camera **cannot be reduced** with a passive shielding, different lens and sensors are necessary
- Cosmogenic neutrons produced by muons interacting in the shielding might not be negligible in view of the next phases of CYGNO, we need to include it in the future simulations

Thank you for your attention!