

Response linearity and natural background studies

G. Cavoto, E. Di Marco, D. Pinci

Collaboration meeting, 19 December 2022

Episode 1:

Response linearity with LNF data

- At LNF high statistics data taken with X-ray sources of different energies
 - Large dataset (40k events) acquired with Amersham ²⁴¹Am source impinging on different material targets which produces X-rays at different energies:

Material	Energy K_{α} [keV]	Energy K_{β} [keV]
Cu	8.04	8.91
Rb	13.37	14.97
Mo	17.44	19.63
Ag	22.10	24.99
Ba	32.06	36.55

 Table 2. X-ray emitted by the multi-target source.

Each targets emits mainly 2 lines:

• K_{α} + ~20% at a slightly higher K_{β}

. The $\Delta E = E_{K_{\beta}-K_{\alpha}}$ increases with E.

For lower E's cannot be resolved in CYGNO

- In addition we have our main candle from ⁵⁵Fe: E=5.9 keV (+ 6.5 keV 2nd line)
 physics interest in low energy response of CYGNO (E<6 keV):
 - → we can use ⁵⁵Fe source to induce X-rays emissions from targets with $K_{\alpha,\beta} < 5.9 \text{ keV}$
- Not an easy task:
 - •X-rays yield lowers a lot when lowering energy. Eg: LY(8keV) \approx 3% LY(46 keV)
 - Absorption by the LIME PMMA window increases at lower energies
- ${\scriptstyle \blacktriangleright}$ \Rightarrow a lot of data taken with Ti and Ca to be able to see something

Material	Energy K_{α} [keV]	Energy K_{β} [keV]	55 Fe
Ti	4.51	4.93	5.9 keV X-rays Target materia
Ca	3.69	4.01	
			Low E X-rays
N.B. Even in 5.9 keV X-ra	"reflection mode" ys arrives to LIME	', something of the	e original

These are the golden datasets collected in Frascati for the energy calibration

Numbers	Description	РМТ
5790-5860	Multi-source High Statistics	
5861-5911	5911 55Fe: BKG and High Statistics + Water Cooling	
6121-6141	-6141 Titanium + BKG High Statistics	
6143-6290	6143-6290 Calcium + Pedestal Very High Statistics	

- Clusters are selected to reject very long tracks
 - A useful selection is on the long tracks which saturate the camera exposure window in one direction: correlation among the track-angle and width (<u>D. Marin's presentation on 16 June 2022</u>)
 - RMS of the pixel light yield cluster > 7 to reject more fake clusters (lowered to 6.5 for Ca,Ti in order to not shape too much the background close to a low-E signal)

Absolute energy calibration with our cleanest candle: high rate ⁵⁵Fe source

• At LNF, z = 26cm, standard HV: peak at 8350 ± 10 counts \equiv 5.9 keV

Conditions (P,T,HV) can move from one data taking to another: to compare multiple runs we need to have something common to all the runs to inter-calibrate them

► can use the long tracks (at LNF cosmics + ambient radioactivity, at LNGS only the latter): e.g. the average dE/dx, energy density $\delta = N_{\gamma}/N_{\text{pix}}$, etc.

Eg. For LNF runs discovered that

 $LY_{Fe} \approx 1.2 \times LY_{MS,Ti,Ca}$

• In this particular case we don't know the origin

In general, it is a useful check that we should do routinely

- A glimpse to all data together: we can see the contributions of all the source by eye.
 - Except Ti whose line is very close to ⁵⁵Fe one and has to be taken with caution

E. Di Marco

Each signal line modeled with a Cruijff function (a Gaussian with different left-right resolutions and non-Gaussian tails):

$$f(x) = \exp\left(\frac{(x-m)^2}{2\sigma_{L,R}^2 + \alpha_{L,R}(x-m)^2}\right)$$

• Each signal model has **2 lines** (K_{α}, K_{β}) , with:

- $\Delta E(K_{\alpha}, K_{\beta})$ fixed to the expected values (i.e. in the fit $m_{K_{\beta}} \equiv m_{K_{\alpha}} + \Delta E$)
- Relative fraction of the two yields free to float in [0-30%] (expected ~20% at emission)
- Freely floating shape parameters, but the 2 shapes are forced to be the same (neglect $\sigma_{K_{\alpha}} \neq \sigma_{K_{\beta}}$)
- Exception for Ca and Ti, where **4 lines expected**, i.e. 2 additional ones from ⁵⁵Fe X-rays
- Background modelled with a Bernstein polynomial of order n (n up to 5), with parameters fixed to values obtained on no-source data

0^L 2

superclust 250

0⊾ 2

superclusters 400

- 000

′10

Δ

•Titanium: the Ti component is much smaller than the very close ⁵⁵Fe: the fit should be taken with some caution (i.e. the main uncertainty is not the stat one)

• From the z-scan, the LY changes of about $\Delta E/\Delta z \approx 2\%/cm$. Included the uncertainty on the z position of $\pm 1cm$.

(LIME)

CYGNO

Points for both K_{α} (1st) and K_{β} (2nd) line shown in the plot:

- The two are not independent, since for each fit $\Delta E(K_{\alpha}, K_{\beta})$ is fixed to the expectation
- Still, both contribute to the fit of a unique scale parameter

Episode 2:

From LNF to LNGS

 Long term stability measurements show the dependency of the light yield in response to 5.9 X-rays to gas conditions.

▶ In particular the gain G = G(ρ) = G(P/T $\propto \alpha_{\text{Townsend}}$)

Expect final LNGS/LNF light yield ratio ~ 90%

300

(hours)

LNGS: runs 5694 - 5730

Épisode 3:

Background studies at LNGS

- Reconstructed few no-source runs at LNF with exactly the same code / thresholds as for LNGS to compare the two datasets
 - a full re-reco of LNF with "autumn22" is not useful, since the occupancy of LNF>>LNGS makes the "winter22" version better for LNF
- LNF and LNGS data taking have two main differences:
 - Overground the cosmic component is much larger apply D. Marin selection to both
 - Different exposure: 50 (=140 real) ms (LNF) vs 300 (=390 real) ms. The latter mitigates the cutting of long tracks because of the global exposure time saturation limit a lot => length comparison not really fair

- Components normalization:

 $0.3 \leq E \leq 6 \text{ keV}$

- LNGS: number of reconstructed clusters
- Fakes: clusters reconstructed on pedestal runs, normalized to LNGS livetime (1% for $E \lesssim 6 \; {
 m keV}$)
- LNF: clusters reconstructed with exactly the same LNGS reco, few runs (5862-5867), normalized to LNGS livetime
 - Further normalization to fit LNGS rate, with no on energy selection : r=NGS / LNF = 31%

$6 \lesssim E \lesssim 200 \text{ keV}$

$0.3 \leq E \leq 200 \text{ keV}$

19 December 2022

 Two components of clusters with E proportional to length, with different coefficients (same for LNGS and LNF)

All these data are reconstructed

Numbers	Description	PMT	Source	Gas Flux	PMT Thr
3000-3003	Scan HV PMT	Yes	None	20 l/h	15 mV
3009-3116	stability while flushing gas (Z=5cm)	Yes	55Fe	20 l/h	15 mV
3125-3160	stability while flushing gas (Z=25cm)	Yes	55Fe	20 l/h	15 mV
3161-3201	BKG: first study, crashed after 40 runs	Yes	None	20 l/h	15 mV
3358-3551	BKG	Yes	None	20 l/h	15 mV
3554-3568	BKG: first study, crashed after 18 runs	Yes	None	20 l/h	15 mV
3569-4128	BKG	No	None	20 l/h	15 mV
4141-4143	scan HVGEM All	Yes	55Fe	20 l/h	15 mV
4145-4201	scan Z, scan VGEM1	Yes	55Fe	20 l/h	15 mV
4257-4266	scan Z, scan VGEM1	Yes	55Fe	20 l/h	15 mV
4271-4302	scan Z, scan VGEM1	Yes	55Fe	20 l/h	15 mV
4202-4256	stability (Z=25cm)	Yes	55Fe	20 l/h	15 mV
4314-4365	stability (Z=25cm)	Yes	55Fe	20 l/h	15 mV
4366-4381	Test Trigger	Yes	55Fe	20 l/h	15 mV
4391-4468	stability (Z=25cm), thr 15 mV	Yes	55Fe	20 l/h	15 mV
4469-4475	stability (Z=25cm), thr 5 mV	Yes	55Fe	20 l/h	5 mV
4475-4492	BKG: 5 mV	Yes	None	20 l/h	5 mV
4493-4512	stability (Z=25cm), thr 5 mV	Yes	55Fe	20 l/h	5 mV
4513-4780	55Fe: stability (Z=25cm), thr 5 mV, flux 3l/h	Yes	55Fe	3 l/h	5 mV
4782-4935	BKG: stability (Z=25cm), thr 5 mV, flux 3l/h	Yes	None	3 l/h	5 mV
4936-4947	55Fe: 100 ms exposure, thr 5 mV, flux 3l/h	Yes	55Fe	3 l/h	5 mV
4949-4963	55Fe: $(Z = 5 \text{ cm})$ thr 5 mV, flux 3l/h, test equalization	Yes	55Fe	3 l/h	5 mV
4964-4972	55Fe: (Z = 25 cm) thr 100 mV, flux 3l/h	Yes	55Fe	3 l/h	5 mV
4973-4977	55Fe: $(Z = 25 \text{ cm})$ thr 75 mV, flux 31/h	Yes	55Fe	3 l/h	5 mV
4978-4982	55Fe: $(Z = 25 \text{ cm})$ thr 50 mV, flux 3l/h	Yes	55Fe	3 l/h	5 mV
4983-4987	55Fe: (Z = 25 cm) thr 200 mV, flux 3l/h	Yes	55Fe	3 l/h	5 mV
4988-4992	55Fe: (Z = 25 cm) thr 255 mV, flux 3l/h	Yes	55Fe	3 l/h	5 mV
4993-5000	55Fe: $(Z = 25 \text{ cm})$ thr 5 mV, flux 3l/h, scan drift field	Yes	55Fe	3 l/h	5 mV
5001-5106	BKG: 5 mV, thr 5 mV, flux 3l/h	Yes	None	3 l/h	5 mV
5107-5162	55Fe: $(Z = 25 \text{ cm})$ thr 5 mV, flux 201/h, after operations on gas system	Yes	55Fe	20 l/h	5 mV
5163-5174	55Fe: (Z = 25 cm) thr 5 mV, flux 1l/h, after operations on gas system	Yes	55Fe	1 l/h	5 mV
5175-5178	WARNING: the sequencer was on while the cap was removed, the data of these runs could be thrash	Yes	55Fe	1 l/h	5 mV
5179-5366	55Fe: $(Z = 25 \text{ cm})$ thr 5 mV, flux 11/h	Yes	55Fe	1 l/h	5 mV
5377-5491	55Fe: (Z = 25 cm) thr 5 mV, flux 11/h - new PMT HV (part 1)	Yes	55Fe	1 l/h	5 mV
5507-5650	55Fe: $(Z = 25 \text{ cm})$ thr 5 mV, flux 11/h - new PMT HV (part 2)	Yes	55Fe	1 l/h	5 mV
5652-5692	55Fe: (Z = 25 cm) thr 5 mV, flux 10 l/h - new PMT HV - to study the effect of new gas	Yes	55Fe	10 l/h	5 mV
5694-5730	55Fe: (Z = 25 cm) thr 5 mV, flux 10 l/h - new PMT HV - stable	Yes	55Fe	10 l/h	5 mV
5732-5740	55Fe: $(Z = 25 \text{ cm})$ thr 2 mV, flux 10 l/h - new PMT HV - Drift Field Scan	Yes	55Fe	10 l/h	2 mV
5741-5908	BKG: thr 2 mV, flux 10 l/h - new PMT HV - (part 1)	Yes	None	10 l/h	2 mV
5910-5921	55Fe: (Z = 25 cm) thr 2 mV, flux 10 l/h - new PMT HV - PMT HV Scan	Yes	55Fe	10 l/h	2 mV
5922-6287	BKG: thr 2 mV, flux 10 l/h - new PMT HV - (part 2)	Yes	None	10 l/h	2 mV
6288 - 6744	BKG: thr 2 mV, flux 10 l/h - new PMT HV - (part 2) - no DGTZ	Yes	None	10 l/h	2 mV

E. Di Marco

19 December 2022

- Dominated by natural radioactivity (+cosmics at LNF).
 - Remember $\Delta t_{LNGS} = 3.4 \Delta t_{LNF}$

Doing a rate estimate difficult, Especially for LNF, due to cluster splitting in high occupancy

Cosmics component at LNF expected to have **dE/dx MPV = 3.3 keV/cm** N.B. Energy scale is **90% lower** at LNGS

 All clusters longer than 10 cm. No removal of the cosmics-dominated phase space (Marin's band)

Short tracks (55Fe - dominated)

INFN

- Performance understanding on LIME at LNF mature
 - Paper in preparation should be available for internal review after Christmas
- LNGS data analysis started
 - A lot of data collected with and without Fe source to be analysed
 - First results seems roughly in line with what we expected (energy scale and background rates w/o shielding)
 - All the data collected so far are reconstructed and copied to the cloud
 - Description of data-taking <u>here</u>, reconstructed data <u>here</u>.
 - Documentation as usual in the wiki page here
 - Autumn22 tag of the code robust, occupancy is small enough with 300 ms exposure, no problem of long tracks cut by global exposure time limit
 - ightarrow now it is time for a serious comparison with simulation
- •Many developments on the PMT side (see F. Borra's presentation in next session)
 - Time to (re-)integrate it in the reconstruction code to put output in the RECO files
- •Future: ²⁴¹Am source data (with a shield to increase S/B, needed for low activity source)

What is the nuclear decay / fluorescence involving Ca (well, gypsum) that emits X-rays with E=190 keV ?

