Overview of the studies on He-CF₄ mixtures with hydrocarbon additives performed during the past year in Coimbra

Coimbra Group

LIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal

Experimental Setup

A Large Area Avalanche Photodiode (LAAPD) was used to readout the EL produced in the avalanches of a Gas Electron Multiplier (GEM).

Isobutane admixtures to He-40%CF₄

Total and visible EL yields

We evaluated isobutane concentrations up to 5% and found that:

- Adding isobutane decreases the total and visible EL yields, meaning that isobutane absorbs the visible and UV photons emitted by He-40%CF₄.
- The best energy resolution is about 20% for all mixtures.

Isobutane admixtures to He-40%CF₄

Photons emitted per avalanche electron

The number of photons emitted per avalanche electron is constant for each isobutane admixture and independent of the voltage across the GEM.

%i-C ₄ H ₁₀	Total	Visible
0%	0.113(5)	0.0669(27)
1%	0.0655(24)	0.039(5)
2%	0.0383(17)	-
3%	0.0247(10)	0.0175(8)
4%	0.0176(6)	0.0124(12)
5%	0.0142(6)	-

Methane admixtures to He-40%CF₄

Total and visible EL yields

We evaluated methane concentrations between 3% and 10% and found that:

- Increasing the amount of methane decreases the total and visible EL yields, meaning that methane absorbs the visible and UV photons emitted by He-40%CF₄.
- The best energy resolution is about 20% for all mixtures.
- Methane admixtures increased the electrical stability of the detector, allowing to achieve higher EL yields than with He-40%CF₄.

Methane admixtures to He-40%CF₄

Photons emitted per avalanche electron

The number of photons emitted per avalanche electron is independent of the biasing voltage for each methane admixture.

Methane quenches less EL photons that isobutane.

%	CH ₄ Total	i-C ₄ H ₁₀ Total
0%	0.1110(5)	0.113(5)
3%	0.0856(9)	0.0247(10)
4%	0.0786(7)	0.0176(6)
5%	0.0717(9)	0.0142(6)
7%	0.0599(8)	-
10%	0.0505	_

Isobutane versus Methane

Maximum EL yield

Both isobutane and methane quench the visible and UV photons emitted by He-40% CF_4 , but they do not completely absorb the optical signal.

Methane seems to be a better additive to He-40%CF₄ because:

- Increases the electrical stability of the detector.
- Achieves higher EL yields than He-40%CF₄.

Using up to 7% methane to increase the WIMP sensitivity will not compromise the optical readout.

Isobutane versus Methane

Visible and UV quenching behaviour

Isobutane seems to have a slight preference for quenching the UV photons emitted by He-40% CF_a .

Methane seems to equally quench the visible and UV photons emitted by He-40%CF₄.

Experimental Setup

We have replaced our 50 µm GEM with a 125 µm COBRA:

- Increased thickness: more robust to electric discharges.
- Third electrode: additional multiplication region in the bottom strips.

Lyashenko, Alexey, et al. "<u>Efficient ion blocking in gaseous detectors and its application to</u> <u>gas-avalanche photomultipliers sensitive in the visible-light range</u>." NIMA 598.1 (2009): 116-120.

Both features of the COBRA_125 may increase the light yield.

But how much?

COBRA 125 GEOMETRY GEM Hole spacing 140 um 400 um Hole in kapton/ 50 µm/ 60 µm/ 70 um 120 um copper Strip width 60 µm Strip separation 60 µm

Top electrode

Bottom electrodes

Anodes < (between the holes)

Cathodes < (around the holes)

He-40%CF₄: GEM Mode

Light is only produced within the holes:

Cathode

-20 V

Anode

-50 V

- Hole bias is increased.
- Strip bias is constant.

Light and Charge increases with increasing bias.

2.3-fold increase in light yield with the COBRA operating in GEM Mode.

Minimum energy resolution (FWHM) is 22% for charge and 24% for light signals.

He-40%CF₄: Full-COBRA

Light first increases linearly and then exponentially. At first, charge is transferred to the anode and then increases exponentially with increasing bias.

Light is produced in the holes and strips:

- Hole bias is constant.
- Strip bias is increased.

He-40%CF₄: Comparison with a standard GEM (sGEM)

The Maximum Light Yield can be increased by

- 2.3-fold (GEM Mode)
- 11.8-fold (full-COBRA Mode)

The Maximum Charge can be increased by

- 21.0-fold (GEM Mode)
- 65.4-fold (full-COBRA Mode)

Methane Admixtures to He-40%CF₄

We also evaluated the light yield of 3%, 5% and 7% CH_{a} .

Maximum Light Yield for each mixture

He-40%CF ₄	GEM	COBRA
0% CH ₄	2.37(17)x10⁴	2.80(20)x10⁵
3% CH ₄	3.90(28)x10⁴	1.30(9)x10⁵
5% CH4	3.09(22)x10 ⁴	1.38(10)x10⁵
7% CH ₄	2.41(17)x10⁴	1.43(10)x10⁵

The light yield of CH₄ admixtures with a COBRA_125 is about **6 times higher** than the light yield of He-40%CF4 with a sGEM.

Conclusions

- Small concentrations of methane and isobutane do not completely quench the EL of He-40%CF₄ They affect both the UV and visible component of the EL.
- Methane admixtures show better optical properties than isobutane admixtures They quench less EL than isobutane and increase the electrical stability of the detector

The light yield can be increased 11.8-fold in He-40%CF₄ with a COBRA_125 due to:

- The thickness of the COBRA (125 µm): increases the threshold for self-sustained micro-discharges.
- The second multiplication region: additional light is created in the strips.
- With a COBRA_125, the light yield of methane admixtures is 6 times higher than the light yield of He-40%CF₄ produced with a standard GEM.

Grazie per l'attenzione Any questions or suggestions?

UNIVERSIDADE D COIMBRA

LIBPhys-UC

R. Roque acknowledges the FCT PhD studentship (ref. SFRH/BD/143355/2019). This work is supported by CERN/FIS-INS/0026/2019, CERN/FIS-TEC/0038/2021 and UID/FIS/04559/2020 (LIBPhys), funded by national funds through FCT/MCTES and co-financed by the European Regional Development Fund (ERDF) through the Portuguese Operational Program for Competitiveness and Internationalization, COMPETE 2020.

CYGNO International Collaboration Meeting 2022 Sapienza, Rome, Italy, 19 - 20 December 2022