

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

calculations?

Programm

DFG Deutsche Forschungsgemeinschaft

Scale Separation in Exotic Atoms

<u>Sotiris Pitelis</u> in collaboration with F. Hagelstein, V. Lensky and V. Pascalutsa

EINN 2023

U

p+

JOHANNES GUTENBERG UNIVERSITÄT MAINZ 02.11.23

Emmy Noether-Programm DFG Deutsche Forschungsgemeinschaft

Freeman Dyson

"If you look for nature's secrets in only one direction, you are likely to miss the most important secrets..."

Freeman Dyson

"If you look for nature's secrets in only one direction, you are likely to miss the most important secrets..."

Freeman Dyson

"If you look for nature's secrets in only one direction, you are likely to miss the most important secrets..."

Freeman Dyson

"If you look for nature's secrets in only one direction, you are likely to miss the most important secrets..."

Freeman Dyson

"If you look for nature's secrets in only one direction, you are likely to miss the most important secrets..."

The Precision Frontier

02.11.23

02.11.23

Electronic Vacuum Polarization in μH

Sec.	Order	Correction	$\mu { m H}$
III.A	$\alpha (Z \alpha)^2$	$eVP^{(1)}$	205.00738
III.A	$\alpha^2 (Z \alpha)^2$	$eVP^{(2)}$	1.65885
III.A	$\alpha^3 (Z \alpha)^2$	$eVP^{(3)}$	0.00752
III.B	$(Z,Z^2,Z^3) \alpha^5$	light by light eVP	-0.00089(
III.C	$(Z \alpha)^4$	recoil	0.05747
III.D	$\alpha (Z \alpha)^4$	relativistic with $eVP^{(1)}$	0.01876

Sotiris Pitelis | EINN 2023

Electronic Vacuum Polarization in μH

arXiv:2212.13782					
Sec.	Order	Correction	$\mu \mathrm{H}$		
III.A III.A III.B III.C III.D	$ \begin{array}{c} \alpha (Z \alpha)^2 \\ \alpha^2 (Z \alpha)^2 \\ \alpha^3 (Z \alpha)^2 \\ (Z, Z^2, Z^3) \alpha^5 \\ (Z \alpha)^4 \\ \alpha (Z \alpha)^4 \\ \alpha^2 (Z \alpha)^4 \end{array} $	$eVP^{(1)}$ $eVP^{(2)}$ $eVP^{(3)}$ light by light eVP recoil relativistic with $eVP^{(1)}$ robativistic with $eVP^{(2)}$	$\begin{array}{c} 205.00738\\ 1.65885\\ 0.00752\\ -0.00089(2)\\ 0.05747\\ 0.01876\\ 0.00017\end{array}$		
		•			
III	$E_{ m QED}$	point nucleus	206.0344(3)		

Electronic Vacuum Polarization in μH

orXiv:2212.13782					
arve	Sec.	Order	Correction	$\mu { m H}$	
	II.A II.A II.B II.C II.D	$\frac{\alpha (Z \alpha)^2}{\alpha^2 (Z \alpha)^2}$ $\frac{\alpha^3 (Z \alpha)^2}{(Z, Z^2, Z^3) \alpha^5}$ $\frac{(Z \alpha)^4}{\alpha (Z \alpha)^4}$	eVP ⁽¹⁾ eVP ⁽²⁾ eVP ⁽³⁾ light by light eVP recoil relativistic with eVP ⁽¹⁾	$205.00738\\1.65885\\0.00752\\-0.00089(2)\\0.05747\\0.01876$	
	ILE	$\alpha^2 (Z\alpha)^4$	relativistic with eVP ⁽²⁾	0.000 17	
Ι	II	$E_{\rm QED}$	point nucleus	206.0344(3)	

$$E_{2P-2S}^{\langle \text{eVP} \rangle} = -\frac{(Z\alpha)^4 m_r^3}{2\pi} \int_{4m_e^2}^{\infty} \mathrm{d}t \frac{\alpha \,\text{Im}\Pi(t)}{\left(\sqrt{t} + Z\alpha m_r\right)^4}$$

$$E_{2P-2S}^{(\text{eVP})} = -\frac{(Z\alpha)^4 m_r^3}{2\pi} \int_{4m_e^2}^{\infty} dt \frac{\alpha \operatorname{Im}\Pi(t)}{\left(\sqrt{t} + Z\alpha m_r\right)^4}$$
$$= -\frac{\alpha(Z\alpha)^4 m_r^3}{4m_e^2} \frac{1}{2\pi} \int_{1}^{\infty} dt \frac{\operatorname{Im}\Pi(4m_e^2 t)}{\left(\sqrt{t} + \frac{m_r}{2m_e} Z\alpha\right)^4}$$

 $4m_{e}^{2}$

$$E_{2P-2S}^{(\text{eVP})} = -\frac{(Z\alpha)^4 m_r^3}{2\pi} \int_{4m_e^2}^{\infty} dt \frac{\alpha \operatorname{Im}\Pi(t)}{\left(\sqrt{t} + Z\alpha m_r\right)^4}$$
$$= -\frac{\alpha(Z\alpha)^4 m_r^3}{4m_e^2} \frac{1}{2\pi} \int_{1}^{\infty} dt \frac{\operatorname{Im}\Pi(4m_e^2 t)}{\left(\sqrt{t} + \frac{m_r}{2m_e} Z\alpha\right)^4}$$

 $4m_{e}^{2}$

$$E_{2P-2S}^{(\text{eVP})} \propto \alpha (Z\alpha)^2 \kappa^2 m_r, \qquad \kappa = \frac{m_r}{2m_e} Z\alpha$$

$$E_{2P-2S}^{\langle \text{eVP} \rangle} \propto \alpha (Z\alpha)^2 \kappa^2 m_r, \qquad \kappa = \frac{m_r}{2m_e} Z\alpha$$

System	m_r [MeV]	K	$\kappa^2 m_r$ [MeV]
Mu	0.509	0.498 Zα	6.71×10^{-6}

$$E_{2P-2S}^{(\text{eVP})} \propto \alpha (Z\alpha)^2 \kappa^2 m_r, \qquad \kappa = \frac{m_r}{2m_e} Z\alpha$$

$$E_{2P-2S}^{(\text{eVP})} \propto \alpha (Z\alpha)^2 \kappa^2 m_r, \qquad \kappa = \frac{m_r}{2m_e} Z\alpha$$

$$E_{2P-2S}^{\langle \text{eVP} \rangle} \propto \alpha (Z\alpha)^2 \kappa^2 m_r, \qquad \kappa = \frac{m_r}{2m_e} Z\alpha$$

$\frac{1}{10} = \frac{1}{131}$					
Tu	System	m_r [MeV]	K	$\kappa^2 m_r$ [MeV]	
	Mu	0.509	0.498 Zα	6.71×10^{-6}	
	н	0.511	0.500 Zα	6.79×10^{-6}	
	μН	94.965	92.9 Zα	43.66	

$$E_{2P-2S}^{(\text{eVP})} \propto \alpha (Z\alpha)^2 \kappa^2 m_r, \qquad \kappa = \frac{m_r}{2m_e} Z\alpha$$

	$\frac{1}{131}$				
Ta	System	m_r [MeV]	K	$\kappa^2 m_r$ [MeV]	
	Mu	0.509	0.498 Zα	6.71×10^{-6}	
	н	0.511	0.500 Zα	6.79×10^{-6}	
	μH	94.965	92.9 Ζα	43.66	$\alpha (Z \alpha)^2$

 $E_{2P-2S}^{\langle \text{eVP} \rangle} = -\frac{(Z\alpha)^4 m_r^3}{2\pi} \int_{4m_e^2}^{\infty} dt \frac{a \,\text{Im}\Pi(t)}{\left(\sqrt{t} + Z\alpha m_r\right)^4}$

Lamb Shift Measurements

Mu: 4.3309(105) μeV **H:** 4.37483(1) μeV **μH:** 202.3706(23) meV

Lamb Shift Measurements

Mu: 4.3309(105) μeV **H:** 4.37483(1) μeV **μH:** 202.3706(23) meV

Lamb Shift Measurements

Mu: 4.3309(105) μeV **H:** 4.37483(1) μeV **μH:** 202.3706(23) meV

Lamb Shift Measurements

Mu: 4.3309(105) μeV **H:** 4.37483(1) μeV **μH:** 202.3706(23) meV

Lamb Shift Measurements

Mu: 4.3309(105) μeV **H:** 4.37483(1) μeV **μH:** 202.3706(23) meV

Lamb Shift Measurements

Mu: 4.3309(105) μeV **H:** 4.37483(1) μeV **μH:** 202.3706(23) meV

Lamb Shift Measurements

Mu: 4.3309(105) μeV **H:** 4.37483(1) μeV **μH:** 202.3706(23) meV

Sensitivity depends on experimental precision, Bohr radius, BSM parameters

$$E_{2P-2S}^{(\text{FS})} = \int_{0}^{\infty} \mathrm{d}Q \, w(Q) \, G_E(Q^2)$$
 DOI:10.1103/PhysRevA.91.040502

$$E_{2P-2S}^{(\text{FS})} = \int_{0}^{\infty} \mathrm{d}Q \, w(Q) \, G_E(Q^2)$$
 DOI:10.1103/PhysRevA.91.040502

$$E_{2P-2S}^{(\text{FS})} = \int_{0}^{\infty} \mathrm{d}Q \, w(Q) \, G_E(Q^2)$$
 DOI:10.1103/PhysRevA.91.040502

$$E_{2P-2S}^{(FS)} = \int_{0}^{\infty} \mathrm{d}Q \, w(Q) \, G_E(Q^2)$$
 DOI:10.1103/PhysRevA.91.040502

$$E_{2P-2S}^{(\text{FS})} = \int_{0}^{\infty} \mathrm{d}Q \, w(Q) \, G_E(Q^2)$$
 DOI:10.1103/PhysRevA.91.040502

02.11.23

 Precision atomic spectroscopy holds potential for New Physics searches

- Precision atomic spectroscopy holds potential for New Physics searches
- Sensitivity to New Physics depends on energy transition, experimental precision, (exotic) atom, BSM model

- Precision atomic spectroscopy holds potential for New Physics searches
- Sensitivity to New Physics depends on energy transition, experimental precision, (exotic) atom, BSM model
- Light BSM contributions are potentially enhanced

- Precision atomic spectroscopy holds potential for New Physics searches
- Sensitivity to New Physics depends on energy transition, experimental precision, (exotic) atom, BSM model
- Light BSM contributions are potentially enhanced
- Variety of (exotic) systems with different scales

