Center for Quantum Technology and Applications

CQTA

Karl Jansen Berlin, ISQCMC , 5.10.2023

Overview

- Center for Quantum Technology and Applications
- > Optimal Flight Gate Assignment
- > Conclusion

The CQTA group

> The present group in Zeuthen

Quantum computing the flight gate assignment problem

- > A classical optimization problem: flight gate assignment (Y. Chai, L. Funcke, T. Hartung, S. Kühn, T. Stollenwerk, P. Stornati, K. Jansen, arXiv:2302.11595)
- > Find shortest path between connecting flights
- Different incoming and outgoing flights need to be assigned to gates
 find optimal assignment
- ➤ Classical optimization problem → quantum advantage?

Quantum computing the flight gate assignment problem

binary variables encoding gates and flights

```
x_{i\alpha} = \left\{ \begin{array}{ll} 1, & \text{if flight } i \in F \ \text{is assigned to gate } \alpha \in G \\ 0, & \text{otherwise} \end{array} \right.
```

 $x \in \{0,1\}^{F \otimes G} \to x \text{ binary variable} \to x \in \{-1,1\}$

eigenstate of third Pauli matrix σ_z

> leads to mathematical description of Hamiltonian

 $H = \sum_{j=1}^{n} Q_{jj} \sigma_j^z + \sum_{\substack{j,k=1\\j < k}}^{n} Q_{jk} \sigma_j^z \otimes \sigma_k^z$

➤ Task: find lowest energy ⇔ shortest path

...

Same mathematical description for problems in traffic, logistics, particle tracking,

Flight <i>i</i>	¥	¥	¥	¥	· ¥	¥
Gate $lpha$	Gate 1	Gate 2	Gate 3	Gate	8 Gate 9	Gate 10
	Gate 11	Gate 12	Gate 13	Gate 1	8 Gate 19	Gate 20
	⋠	⋠	¥	…∦	.↓	⋠

Variational Quantum Eigensolver (VQE)

> a hybrid quantum/classical variational approach

Quantum computing the flight gate assignment problem

- Started with QUBO implementation
- > Implementation of various improvements
 - using binary encoding
 - reformulation of Hamiltonian through projectors
 - Using Conditional Value at Risk (CVaR)
- > see indications of improvement through entanglement

Quantum hardware runs of flight gate assignment problem

(Y. Chai, E. Epifanovsky, K. Jansen, A. Kaushik, S. Kühn, arxiv:2309.09686)

- > hardware runs on IonQ's Aria trapped ion quantum computer
- > circuit: efficientSU2
- > real VQE and inference runs

Convergence

probabilities