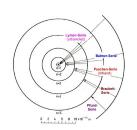


Baryon spectroscopy: new results and perspectives Annalisa D'Angelo

University of Rome Tor Vergata & INFN Rome Tor Vergata for the CLAS Collaboration

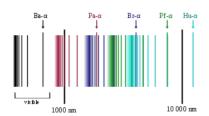
Outline:

- Motivation for light baryon spectroscopy
- Establishing N* states polarized photoreactions
- Identifying the effective degrees of freedom: mesons electro-production
- Signature for hybrid baryons
- Outlook & conclusions

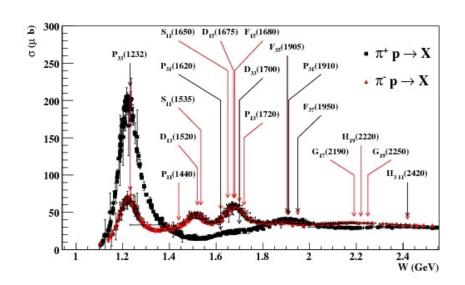


W (GeV)

Why N*? From the Hydrogen Spectrum to QCD



Niels Bohr (1922)

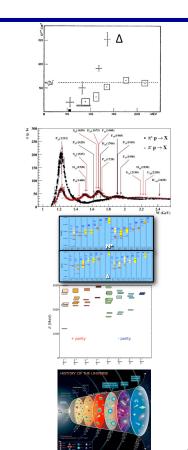

Spectral series of hydrogen

 Understanding the hydrogen atom's ground state requires understanding its excitation spectrum.

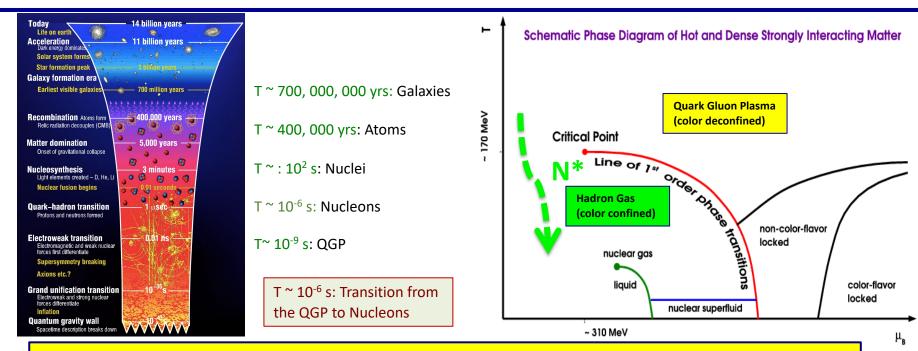
 Understanding the proton's ground state requires understanding its excitation spectrum.

From the Constituent Quark model to QCD.

Historical Markers


1952: First glimpse of the $\Delta(1232)$ in πp scattering shows internal structure of the proton.

1964: Baryon resonances essential in establishing the quark model and the color degrees of freedom.

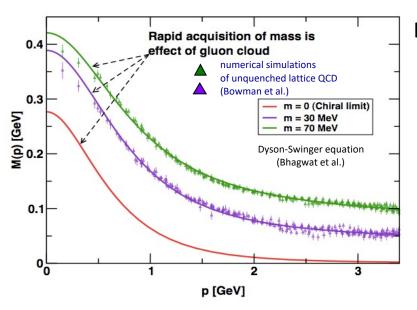

1989: Broad effort to address the missing baryon puzzle.

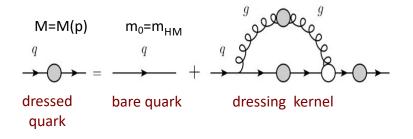
2010: First successful attempt to predict the nucleon spectrum in LQCD.

2015: Understanding of the baryon spectrum is needed to quantify the transition from QGP to the confined phase in the early universe.

Strong QCD is born ~ 1µsec after the Big Bang

Dramatic events occur in the microsecond old Universe.


- The transition from the QGP to the baryon phase is dominated by excited baryons.
 A quantitative description requires more states than found to date => missing baryons.
- During the transition the quarks acquire dynamical mass and the confinement of color occurs.



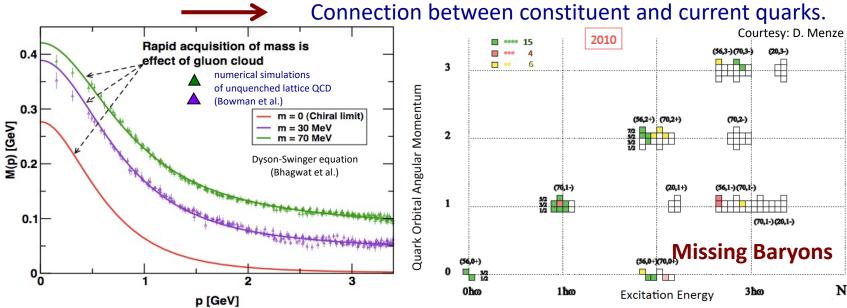
Critical QCD Questions Addressed

How do massless quarks acquire mass?

Effective quark mass depends on its momentum

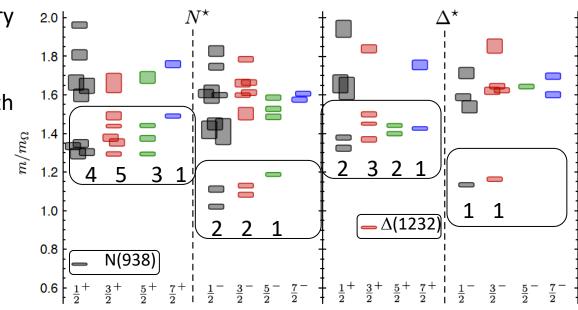
mass composition

<2% Higgs mechanism >98% non-perturbative strong interaction


Measure the Q² dependence of electrocoupling amplitudes

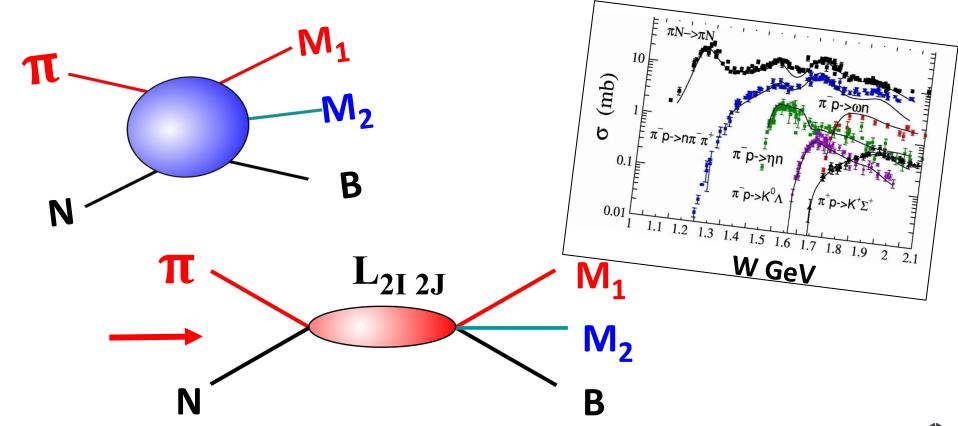
Constituent quark models and SU(6)xO(3)

Current-quarks of perturbative QCD evolve into constituent quarks at low momentum

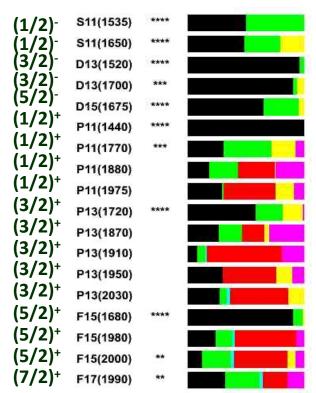

• QCD-inspired Constituent Quark models: states classified by isospin, parity and spin within each oscillator band. Many projected q³ states are still missing or uncertain.

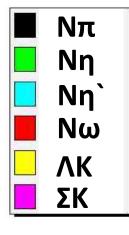
LQCD N* & ∆ Spectra

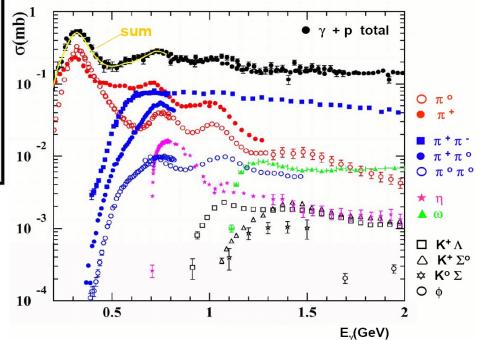
- Exhibit the SU(6)×O(3)-symmetry features
- Counting of levels consistent with non-rel. quark model
- Striking similarity with quark model
- No parity doubling


Problems are not solved!

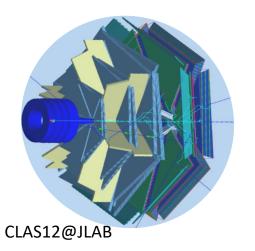
Robert G. Edwards, Jozef J. Dudek, David G. Richards, Stephen J. Wallace **Phys.Rev. D84 (2011) 074508**


Establishing the N* and Δ Spectrum: π N scattering




Establishing the N* and Δ Spectrum

Search all channels: not just πN


Photonuclear cross sections

N* Program – photo- & electro-production of mesons

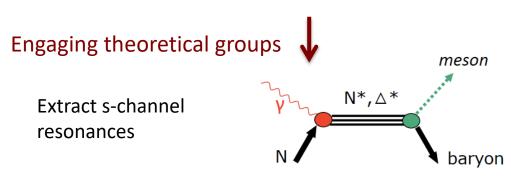
The N* program is one of the key physics foundations of CLAS@JLab, A2@MAMI, CB@ELSA, BGOOD

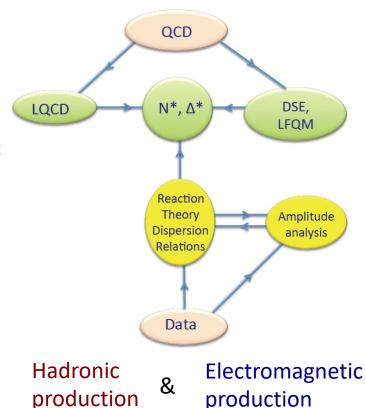
Detectors have been designed to measure cross sections and spin observables over a broad kinematic range for exclusive reaction channels:

 πN , ωN , ϕN , ηN , η 'N, $\pi \pi N$, KY, K*Y, KY*


- N* parameters do not depend on how they decay
- Different final states have different hadronic decay parameters and different backgrounds
- Agreement offers model-independent support for findings
- The program goal is to probe the spectrum of N* states and their structure
 - Probe the underlying degrees of freedom of the nucleon through studies of photoproduction and the Q² evolution of the electroproduction amplitudes.

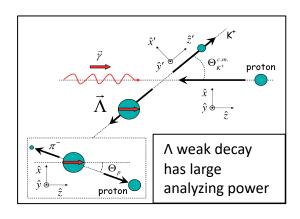
N* degrees of freedom??


Establishing the N* and Δ Spectrum


Experimental requirements:

 Precision measurements of photo-induced processes in wide kinematics, e.g.

$$\gamma p \rightarrow \pi N$$
, ηp , KY , ... $\gamma n \rightarrow \pi N$, $K^0 Y^0$, ...


- More complex reactions, e.g. $\gamma p \rightarrow \omega p$, $p \varphi$, $\pi \pi p$, $\eta \pi N$, K*Y, .. may be sensitive to high mass states through direct transition to ground state or through cascade decays
- Polarization observables are essential

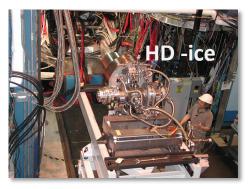
Polarization Observables: Complete Experiment

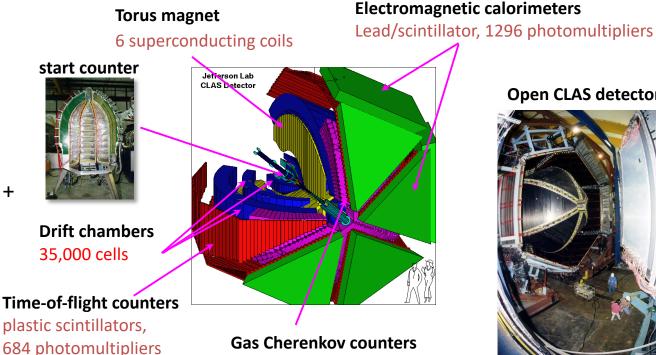
The holy grail of baryon resonance analysis

- Process described by 4 complex, parity conserving amplitudes
- 8 well-chosen measurements are needed to determine amplitude.
- Up to 16 observables measured directly
- 3 inferred from double polarization observables
- 13 inferred from triple polarization observables

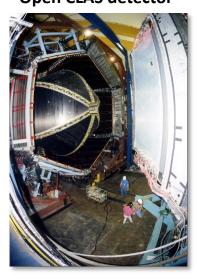
Beam (P^{γ})	Target (P^T)		Reco	il (P^R)			Tar	get (1	P^T) + F	Recoil ((P^R)		
			x' y	z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
	x y	z			\boldsymbol{x}	y	z	\boldsymbol{x}	y	z	\boldsymbol{x}	\boldsymbol{y}	z
unpolarized $d\sigma_0$	\hat{T}		1	ò	$\hat{T}_{x'}$		$\hat{L}_{x'}$		$\hat{\Sigma}$		$\hat{T}_{z'}$		$\hat{L}_{z'}$
$P_L^{\gamma} \sin(2\phi_{\gamma})$	\hat{H}	\hat{G}	$\hat{O}_{x'}$	$\hat{O}_{z'}$		$\hat{\mathbf{C}}_{\mathbf{z}'}$		$\hat{\mathbf{E}}$		$\hat{\mathbf{F}}$		$-\hat{\mathbf{C}}_{\mathbf{x'}}$	
$P_L^{\gamma}\cos(2\phi_{\gamma})$ $-\hat{\Sigma}$	<u>—i</u>	<u> </u>		$-\hat{T}$	$-\hat{\mathbf{L}}_{\mathbf{z}'}$		$\hat{\mathbf{T}}_{\mathbf{z}'}$		$-\mathbf{d}\sigma_{0}$		$\hat{\mathbf{L}}_{\mathbf{x}'}$		$-\hat{T}_{\boldsymbol{x}'}$
circular P_c^{γ}	\hat{F}	$-\hat{E}$	$\hat{C}_{x'}$	$\hat{C}_{z'}$		$-\hat{\mathbf{O}}_{\mathbf{z}'}$		$\hat{\mathbf{G}}$		$-\hat{\mathbf{H}}$		$\hat{\mathbf{O}}_{\mathbf{x}'}$	

A. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, J.Phys. 38 (2011) 053001



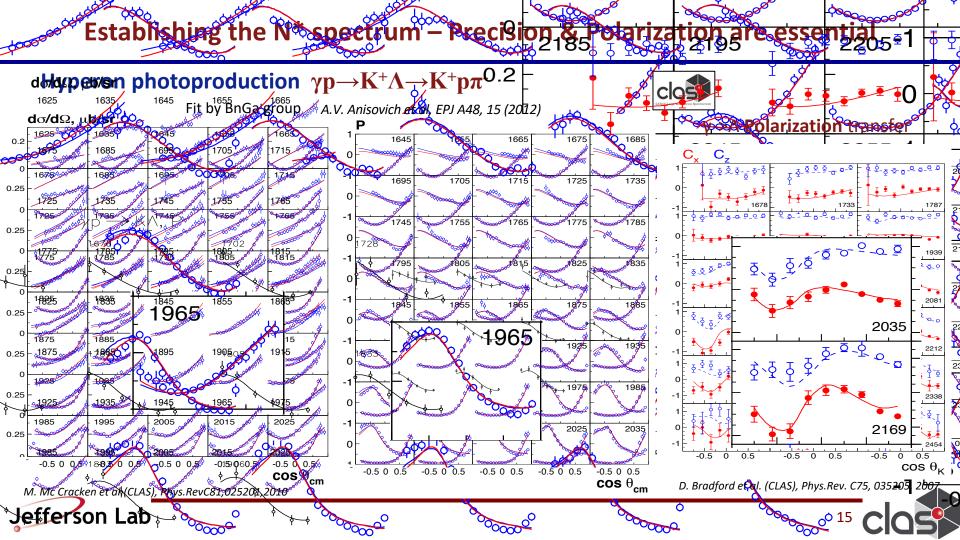

Experimental set-up

Polarized Frozen-spin Targets & CEBAF Large Acceptance Spectrometer

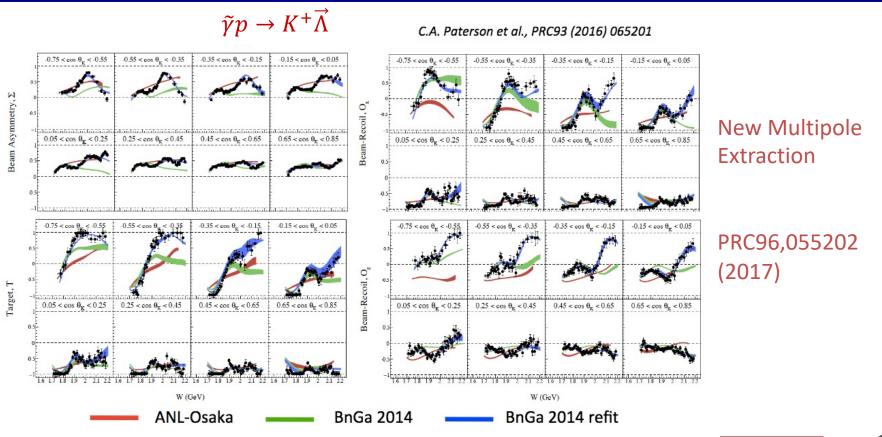


or

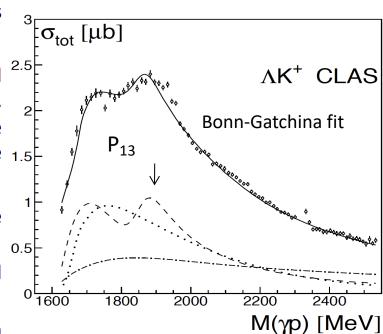
Open CLAS detector



 e/π separation, 256 PMTs


CLAS N* Experimental Program

	σ	Σ	Т	Р	E	F	G	н	T _x	Tz	L _x	Lz	O _x	Oz	C _x	Cz
pπ ⁰	✓	✓	✓		✓	✓	✓	✓	✓-published, ✓-acquired							
nπ+	√	✓	✓		√	✓	√	✓		1		,				
рη	√	√	✓		√	✓	✓	√	Proton targets							
ρη'	✓	√	✓		✓	√	✓	✓								
Νππ	√	✓	✓		✓	✓	✓	✓								
р ω/ф	√	√	√	√	√	√		√	√SDME							
K⁺Λ	√	✓	✓	✓	✓	√	✓	√	√	✓	✓	√	✓	✓	✓	√
Κ+Σ0	✓	√	✓	√	√	√	√	√	√	√	√	√	✓	✓	✓	✓
Κ0*Σ+	√	✓									✓	✓				
K+*Λ	✓	✓		√					√SDME							
									_							
pπ ⁻	✓	✓			✓	✓	✓		Neutron targets							
pρ⁻	✓	✓			✓	✓	✓		11041.011 tal 900							
K+Σ-	✓	✓			✓	✓	✓									
K ₀ Λ	√	✓		✓	✓	✓	✓				✓	✓	✓	✓	✓	✓
K ⁰ Σ ⁰	✓	✓		√	✓	✓	✓				✓	√	✓	✓	✓	✓
K ^{0*} Σ ⁰	√	√														


More N* from polarized K⁺ Λ photoproduction?

The N(1900)3/2+ State

- Bump first seen in SAPHIR $K^+ \Lambda$ data but due to systematics in the data misinterpreted as $J^P = 3/2^-$ (D-wave resonance).
- State was solidly established in Bn-Ga coupled-channel 2.3 analysis making use of very precise KΛ polarized data, resulting in *** assignment in PDG2012. (P-wave resonance) and confirmed by more recent multipole 1.5 extraction (PRL 119, 062004, 2017)
- State confirmed in an effective Langrangian resonance model analysis $\gamma p \rightarrow K^+ \Lambda$ (O. V. Maxwell, PRC85,034611, 2012)
- State confirmed in a covariant isobar model single channel analysis $\gamma p \rightarrow K^+ \Lambda$ (T. Mart & M. J. Kholili, PRC86, 022201, 2012).
- First baryon resonance observed and multiply confirmed in electromagnetic production.

Promoted to **** state in 2021 RPP

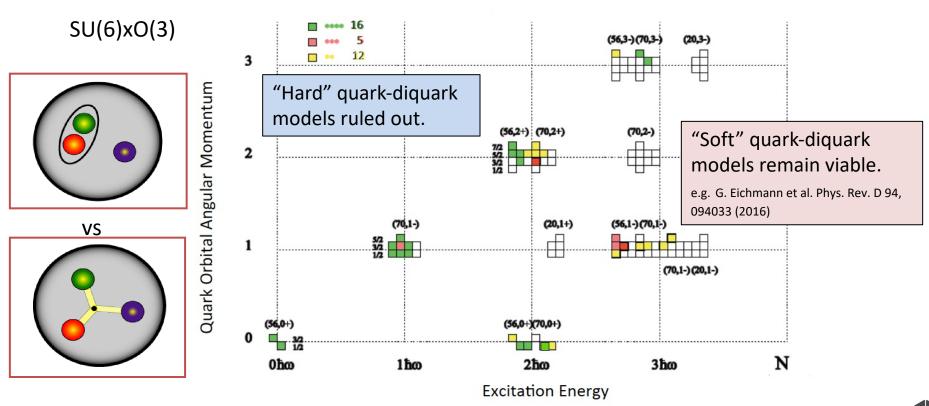
Updated Spectrum of Baryon Resonances

- From 2000 to 2010 no new Baryon resonances in PDG. πN scattering data and π -photoproduction only.
- Multi-channel models now include many photoproduction data. e.g. Bonn-Gatchina PWA analysis

State N(mass)J ^P	PDG pre 2010	PDG 2012	PDG 2021
N(1710)1/2 ⁺	***	***	***
N(1880)1/2+		**	***
N(1895)1/2 ⁻		**	***
N(1900)3/2 ⁺	**	***	***
N(1875)3/2 ⁻		***	***
N(2120)3/2-		**	***
N(2000)5/2 ⁺	*		**
N(2060)5/2		**	***

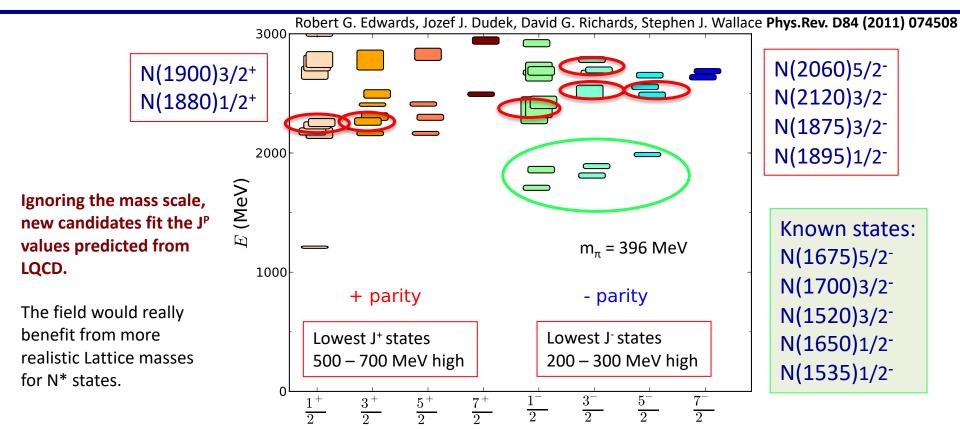
A. Anisovich et al. EPJ A 48, 15 (2012)

PRL 119, 062004, 2017)

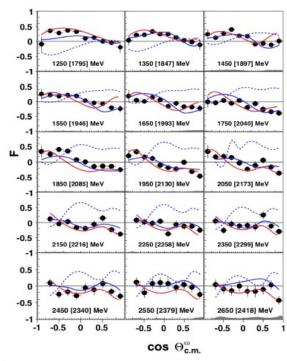

Naming scheme has changed:

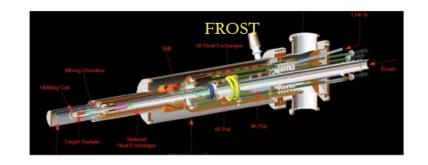
 $L_{2|2J}(E) \rightarrow J^{P}(E)$

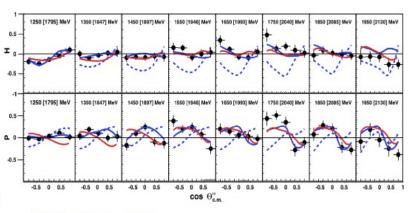
 Results from photoproduction now add to the PDG tables and determine properties of baryon resonances



Do New States Fit into Q³ QM?

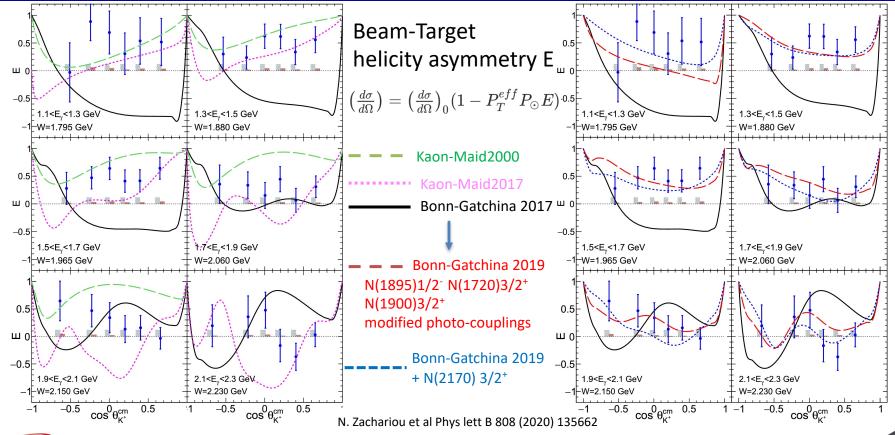

Do New States Fit into LQCD Projections?



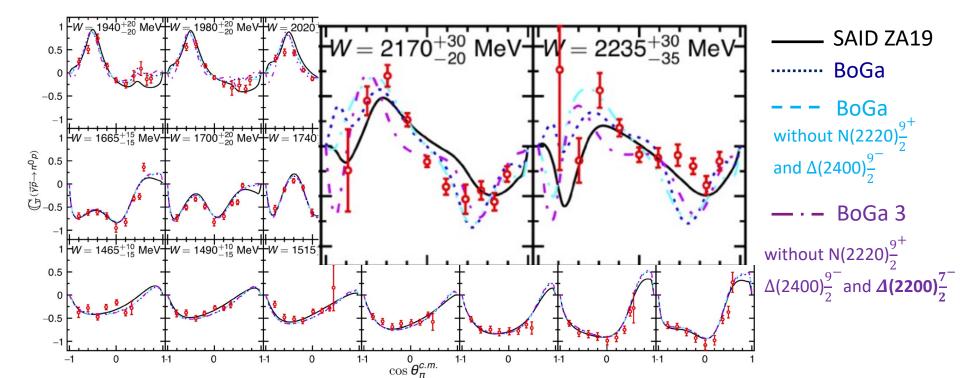

Beam-target asymmetries $\vec{\gamma} \vec{p} \rightarrow \vec{p} \omega$

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left\{ \left(1 - \delta_l \Sigma \cos 2\beta \right) + \Lambda \cos \alpha \left(-\delta_l H \sin 2\beta + \delta_{\odot} F \right) - \Lambda \sin \alpha \left(-T + \delta_l P \cos 2\beta \right) \right\},$$

P. Roy et al. (CLAS), Phys.Rev. Lett. 122 (2019) 162301



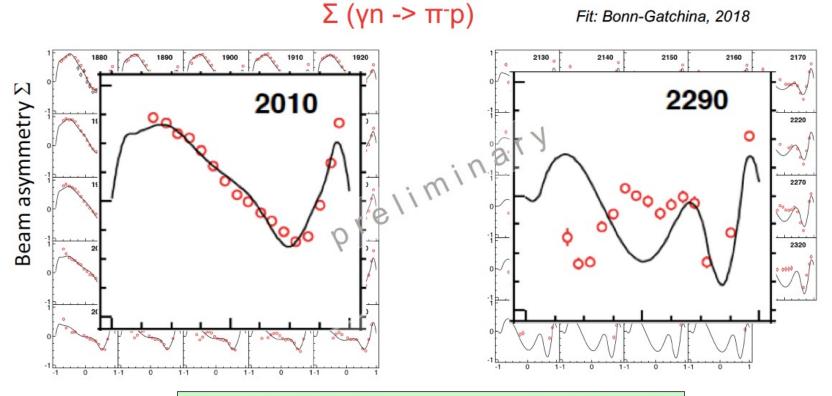
Both PWA need newly discovered nucleon resonances: N(1880)1/2+, N(1895)1/2-, N(1875)3/2-, N(2120)3/2-. Also strong evidence is found for N(2000)5/2+ (previously also seen in unpolarized CLAS ω data)


Search for Neutron States: $\vec{\gamma} \cdot \vec{n} \rightarrow K^+ \Sigma^-$



Beam-target asymmetry G in $\overrightarrow{\gamma} + \overrightarrow{p} ightarrow \pi^0 +$ p

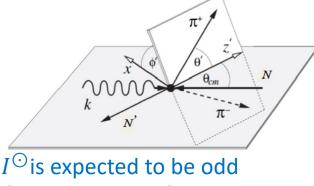
N. Zachariou et al Phys lett B 817 (2020) 136304

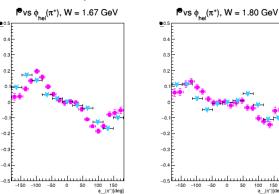


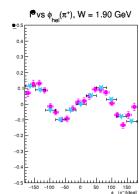
Beam-target asymmetry G in $\overrightarrow{\gamma}+\overrightarrow{p} ightarrow\pi^+$ +n

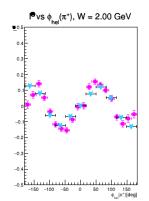
Search for Neutron States: $\overline{\gamma}$ n $\rightarrow \pi^{-}$ p

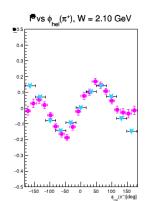
Fit requires additional new resonances above 2100 MeV

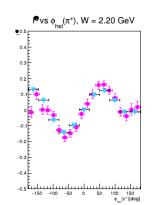


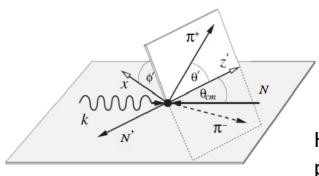

$\pi^+\pi^-$ photoproduction – polarized p target




$$\frac{d\sigma}{dx_i} = \sigma_0\{(1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_{\odot}(\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot})\}$$

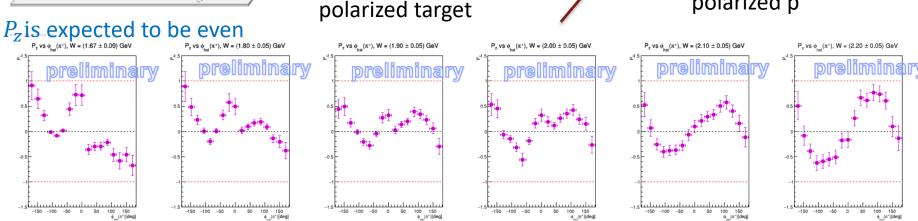

HD-ice frozen-spin polarized target





Preliminary results by: A. Filippi (g14 data-set)

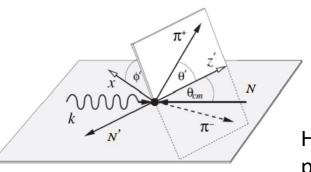
$\pi^+\pi^-$ photoproduction — polarized p target



Measurements of polarization observables

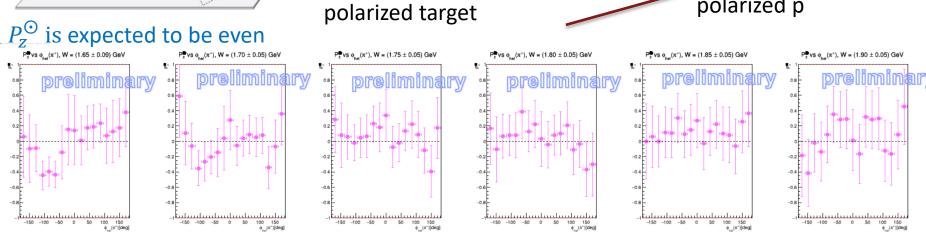
$$\frac{d\sigma}{dx_i} = \sigma_0\{(1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_{\odot}(\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot})\}$$

HD-ice frozen-spin polarized target


polarized p

Preliminary results by: A. Filippi (g14 data-set)

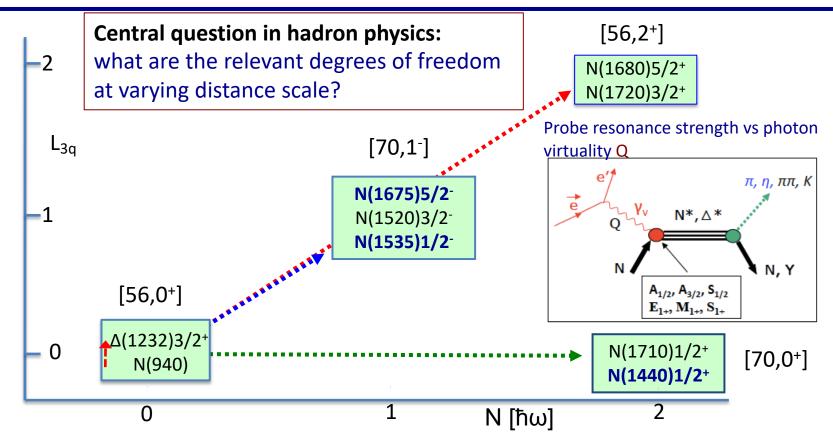
$\pi^+\pi^-$ photoproduction — polarized p target



Measurements of polarization observables

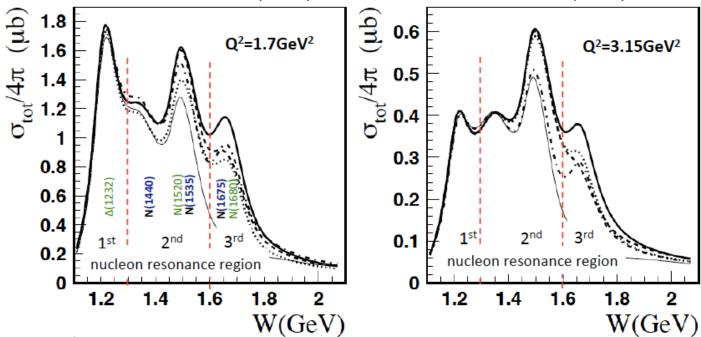
$$\frac{d\sigma}{dx_i} = \sigma_0\{(1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_{\odot}(\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot})\}$$

HD-ice frozen-spin polarized target


polarized p

Preliminary results by: A. Filippi (g14 data-set)

Electroexcitation of N^*/Δ resonances



Total cross section at W < 2.1 GeV

$\gamma^* + p \rightarrow \pi^+ + n$

Different states respond differently to changes in Q²

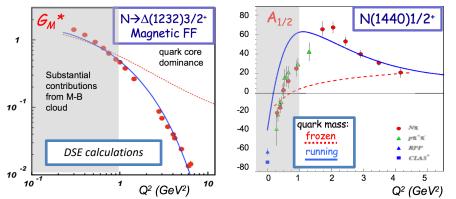
Data: K. Park et al. PRC 77 (2008) 015208; K. Park et al. PRC 91 (2015) 045203

Analysis with UIM & fixed-t DR; Recent review: I. Aznauryan, V. Burkert, Prog. Part. Nucl. Phys. 67 (2012) 1.

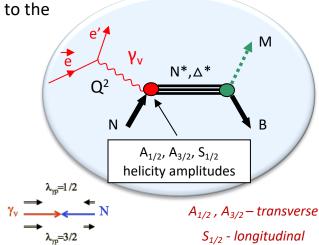
Excited Nucleon Structure

 Nucleon structure is more complex than what can be described accounting for quark degrees of freedom only

- Low Q^2 :

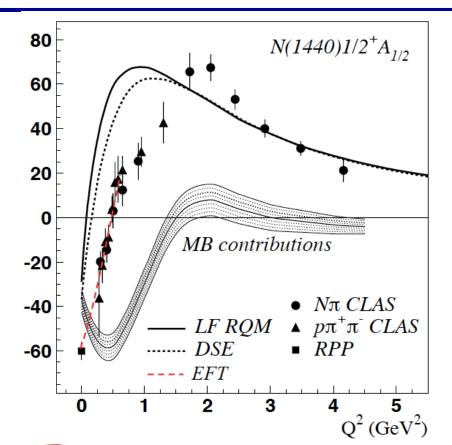

($Q^2 < 5 \text{ GeV}^2$)

structure well described by adding an external meson cloud to inner quark core


-High Q^2 : quark core dominates; transition from $(Q^2 > 5 \text{ GeV}^2)$ confinement to pQCD regime

3q core + meson cloud 3q core pQCD $low Q^2 \longrightarrow high Q^2$

 Calculations of form factors and electrocoupling amplitudes are sensitive to the underlying quark mass distribution



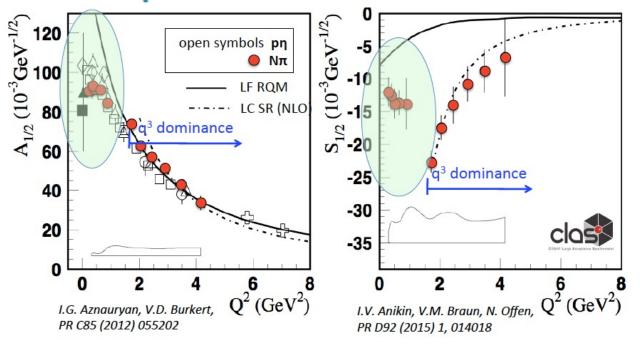
CLAS results vs. QCD expectations with running quark mass

Roper - 1st nucleon radial excitation?

V.B., C. Roberts, Rev.Mod.Phys. 91 (2019) no.1, 011003

LF RQM: I. Aznauryan, V.B. arXiv:1603.06692

DSE: J. Segovia, C.D. Roberts et al., PRC94 (2016) 042201 **EFT**: T. Bauer, S. Scherer, L. Tiator, PRC90 (2014) 015201

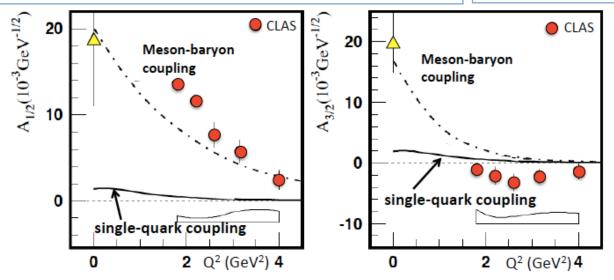

- Non-quark contributions are significant at Q² < 2.0 GeV². The behavior at Q² < 0.5 can be modeled in EFT.
- → The 1st radial excitation of the q³ core emerges as the probe penetrates the MB cloud

"Nature" of the Roper – is consistent with the 1st radial excitation of its quark core surrounded by a meson-baryon "cloud".

MB Contribution to electro-excitation of N(1535)1/2

Is it a 3-quark state or a hadronic molecule?

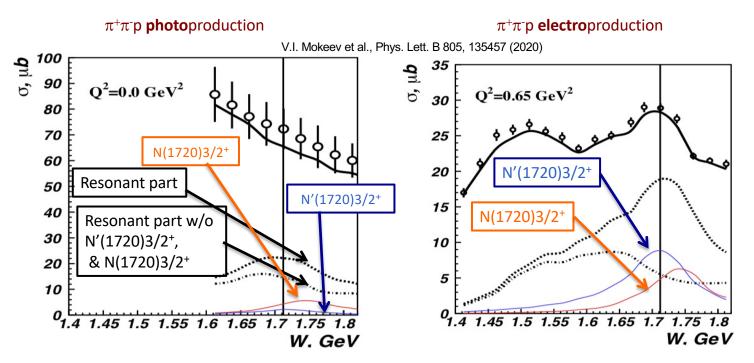
N(1535)1/2⁻ is consistent with the 1st orbital excitation of the nucleon.


Meson-baryon cloud may account for discrepancies at low Q².

MB Contribution to electro-excitation of N(1675)5/2

Quark components to the helicity amplitudes of the N(1675) 5/2 are strongly suppressed for proton target. Single Quark Transition:

$$A_{1/2}^p = A_{3/2}^p = 0$$


- Measures the meson-baryon contribution to the γ^* p N(1675)5/2 directly.
- Can be verified on y^* n N(1675)5/2 which is not suppressed

E. Santopinto and M. M. Giannini, PRC 86, 065202 (2012)

B. Juliá-Díaz, T.-S.H. Lee, et al., PRC 77, 045205 (2008)

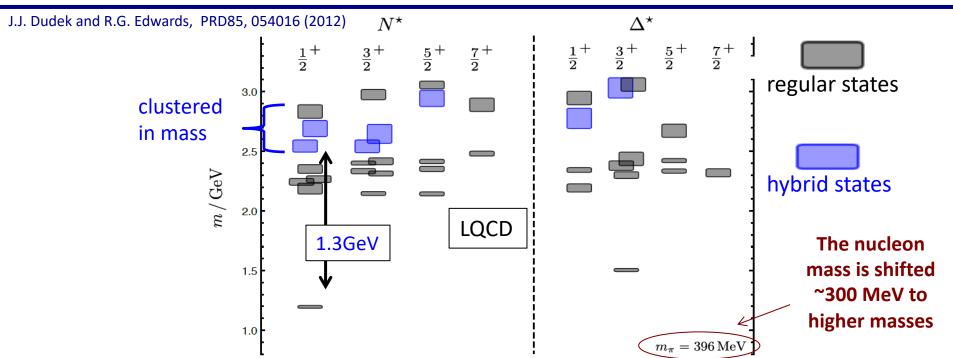
$\pi^+\pi^-$ p CLAS data - Newly Discovered N'(1720)3/2+

- Evidence of a new N'(1720)3/2+ resonance from the combined analysis of CLAS photo- and electroproduction of the $\pi^+\pi^-p$ channel
- ➤ First result on Q² evolution of the new resonance electrocoupling

Hybrid Hadrons: Hadrons with Explicit Gluonic Degrees of Freedom

Hybrid hadrons with dominant gluonic contributions are predicted to exist by QCD.

Experimentally:

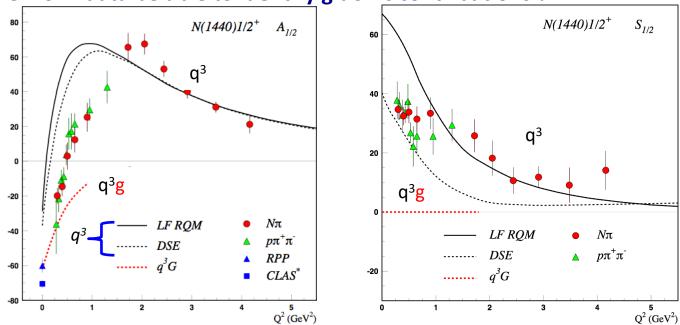

- **Hybrid mesons** |qqg> states may have exotic quantum numbers J^{PC} not available to pure |qq> states GlueX, MesonEx, COMPASS, PANDA
- **Hybrid baryons** |qqqg> have the same quantum numbers J^P as |qqq> electroproduction with CLAS12 (Hall B).

Theoretical predictions:

- ♦ MIT bag model T. Barnes and F. Close, Phys. Lett. 123B, 89 (1983).
- ♦ QCD Sum Rule L. Kisslinger and Z. Li, Phys. Rev. D 51, R5986 (1995).
- ♦ Flux Tube model S. Capstick and P. R. Page, Phys. Rev. C 66, 065204 (2002).

Hybrid Baryons in LQCD

Hybrid states have same J^P values as qqq baryons. How to identify them?


- Overpopulation of N 1/2⁺ and N 3/2⁺ states compared to QM projections.
- $A_{1/2}$ ($A_{3/2}$) and $S_{1/2}$ show different Q^2 evolution.

Separating q³g from q³ states?

CLAS results on electrocouplings clarified nature of the Roper.

Will CLAS12 data be able to identify gluonic contributions?

For hybrid "Roper", $A_{1/2}(Q^2)$ drops off faster with Q^2 and $S_{1/2}(Q^2) \sim 0$.

Hybrid Baryon Signatures

Based on available knowledge, the signatures for hybrid baryons consist of:

- Extra resonances with $J^p=1/2^+$ and $J^p=3/2^+$, with masses > 1.8 GeV and decays into N $\pi\pi$ or KY final states.
- •A **drop** of the transverse helicity amplitudes $A_{1/2}(Q^2)$ and $A_{3/2}(Q^2)$ faster than for ordinary three quark states, because of extra glue-component in valence structure.
- •A suppressed longitudinal amplitude $S_{1/2}(Q^2)$ in comparison with transverse electro-excitation amplitude $(J^P=1/2^+)$.

Candidate reaction channels are:

e p
$$ightarrow$$
 e p π^+ π^- e p $ightarrow$ e K+ Σ^0

CLAS12 and the JLab 12 GeV Upgrade

The JLab 12 GeV upgrade project started 20 years ago...

- 2000-2004: Science case
- 2004-2008: R&D
- 2006-2009: Design and Engineering
- 2009-2015: Construction
- 2012-2017: Installation

Scope of the 12 GeV upgrade project:

- Double the accelerator beam energy
- New Hall D
- Upgrades to existing Halls A, B, C

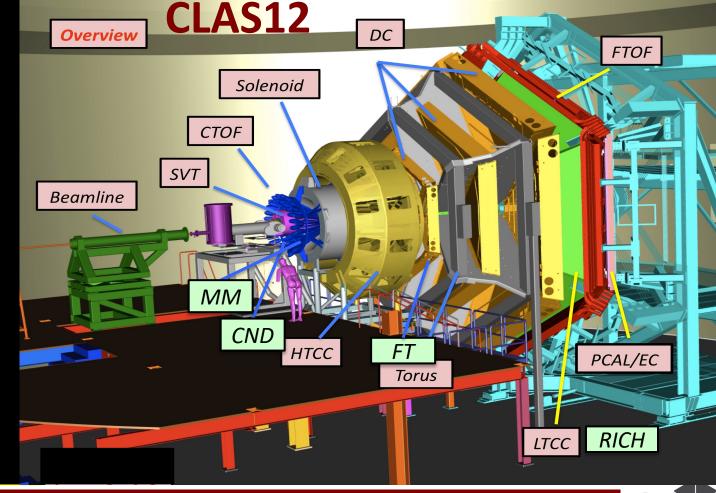
CLAS Collaboration:

- ~200 scientists
- 55 institutions
- 12 countries

Forward Detector (FD)

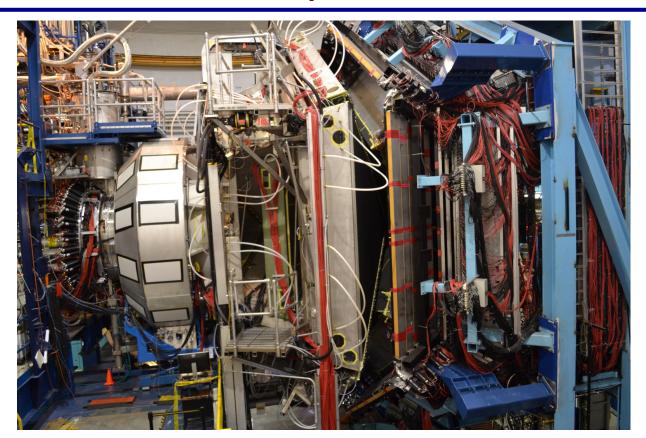
- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward TOF System
- Pre-shower calorimeter
- E.M. calorimeter

Central Detector (CD)

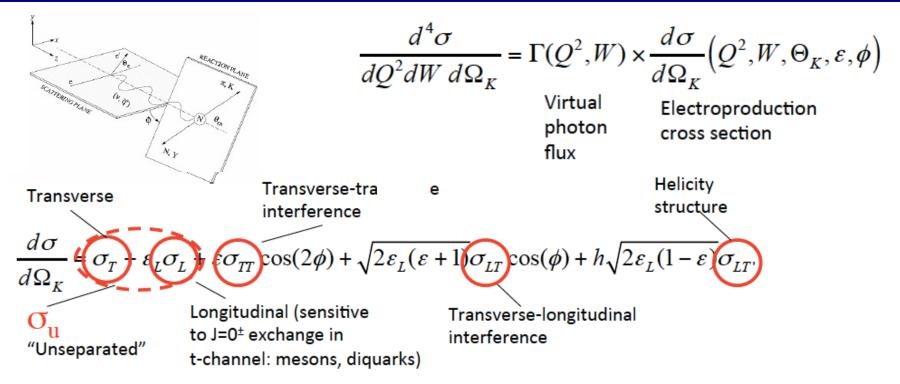

- SOLENOID magnet
- Silicon Vertex Tracker
- Central Time-of-Flight

Beamline

- Cryo Target
- Moller polarimeter
- Shielding
- Photon Tagger


Upgrade to the baseline

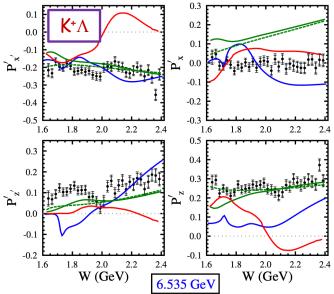
- Central Neutron Detector
- MicroMegas
- Forward Tagger
- RICH detector
- Polarized target

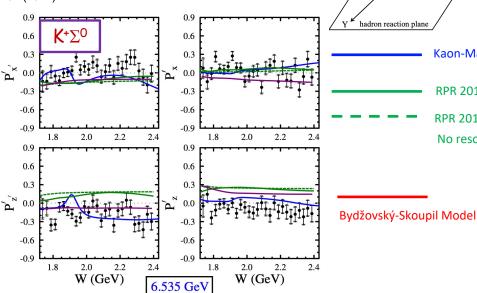

CLAS12 Spectrometer

beam

Electroexcitation kinematics

Measured σ are decomposed using UIM or fixed-t DR to extract N* & Δ helicity amplitudes.


Beam-Recoil Transferred Polarization in K+Y Electroproduction


6.535 GeV and 7.546 GeV electrons on LH₂ target

Extract beam-recoil transferred polarization from longitudinally polarized beam electron to final state hyperon vs. Q^2 , W, cos $q_{\kappa}^{c.m.}$

Part of program to study spectrum and structure of excited nucleon states

D.S. Carman, A. D., L. Lanza, V. I. Mokeev et al., Phys Rev C105, 065201 (2022)

hadron reaction plane

Kaon-Maid

RPR 2011

RPR 2011

No resonances

Summary

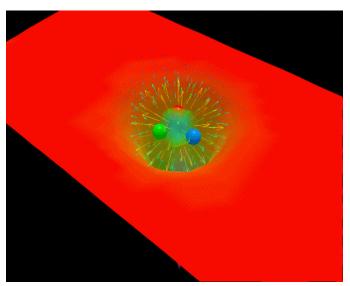
- Major progress made in the last years in the search for N* and Δ states.
 Polarization observables in photo-production have provided crucial constraints
 New states have been found and can be accommodated in CQM and LQCD schemes.
 Naïve (non-dynamical) di-quark models are ruled out.
- Knowledge of Q²-dependence of electrocouplings is necessary to understand the nature (the internal structure) of the excited states.
 - ➤ Roper is the first radial excitation of the q³ core, obscured at large distances by meson-cloud effects.
 - ➤ Leading electrocoupling amplitudes of prominent low-mass states (e.g. N(1535)1/2⁻) is well modeled by DSE/QCD, LC SR and LF RQM for Q²> 2 GeV.
- Search for hybrid baryons with explicit gluonic degrees of freedom is possible investigating the low Q² evolution of high-mass resonance (2-3 GeV) electrocoupligs:
 - Looking for suppressed A^{1/2}, A^{3/2}, S^{1/2} at low Q²

BACKUP SLIDES

Run Group K Production

CHARGE

RUN CONDITIONS – FALL 2018						
Torus Current	100% (3375 A) - negative outbending					
Solenoid	-100 %					
FT	ON @ 7.5 GeV -> OFF @ 6.5 GeV					
Beam/Target	Polarized electrons, unpolarized LH ₂ target					
Luminosity	~ 5 10 ³⁴ cm ⁻² s ⁻¹ @ 7.5 GeV 10 ³⁵ cm ⁻² s ⁻¹ @ 6.5 GeV FULL LUMINOSITY					


15.6 G EVENTS

	Beam Energy	Beam Current	Tgt	Trigger	Collected Events	
	7.5 GeV	35 nA	LH ₂	e in CLAS e in FT + 1 Fwd Hadron	3.5 G	
	7.5 GeV	45 nA	LH ₂	e in CLAS - prescaled e in FT + 1 Fwd Hadron	4.3 G	
	6.5 GeV	60 nA	LH ₂	e in CLAS	7.8 G	

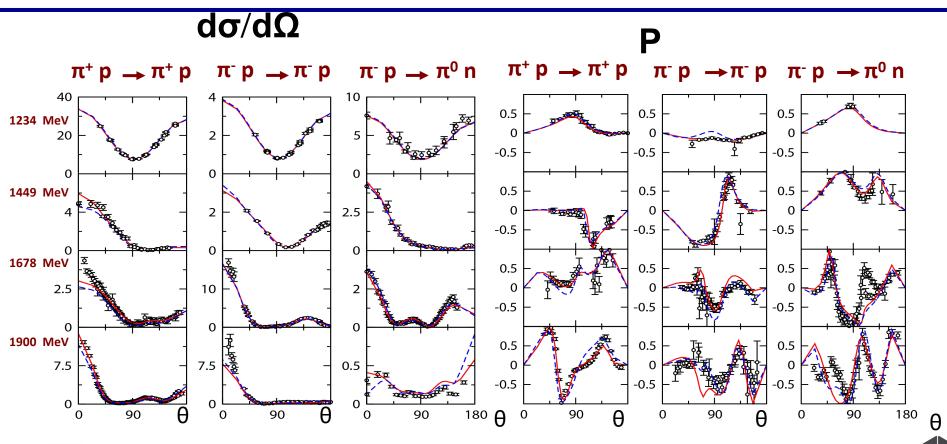
Critical QCD Questions Addressed

The light N* spectrum: what is the role of glue?

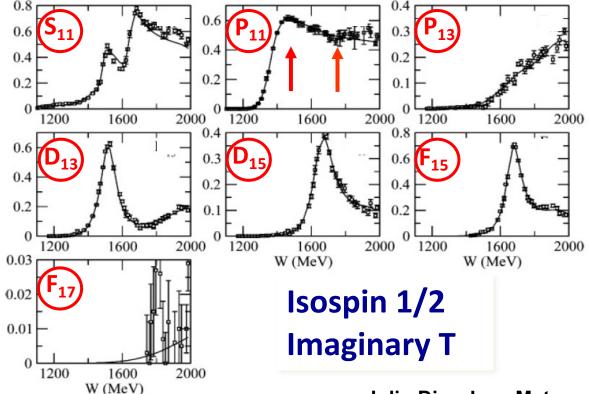
Derek B. Leinweber - University of Adelaide

"Nucleons are the stuff of which our world is made.

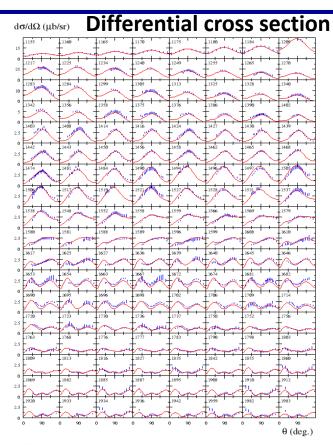
As such they must be **at the center of any discussion of why the world** we actually experience **has the character it does.**"

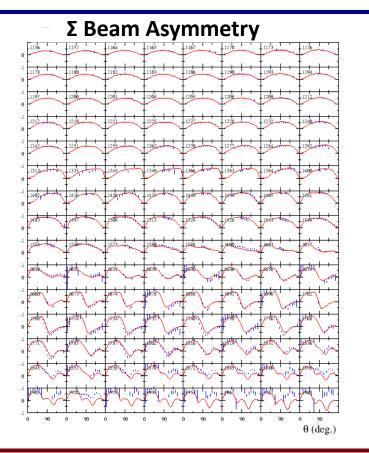

Nathan Isgur, NStar2000, Newport News, Virginia

Search for new baryon states



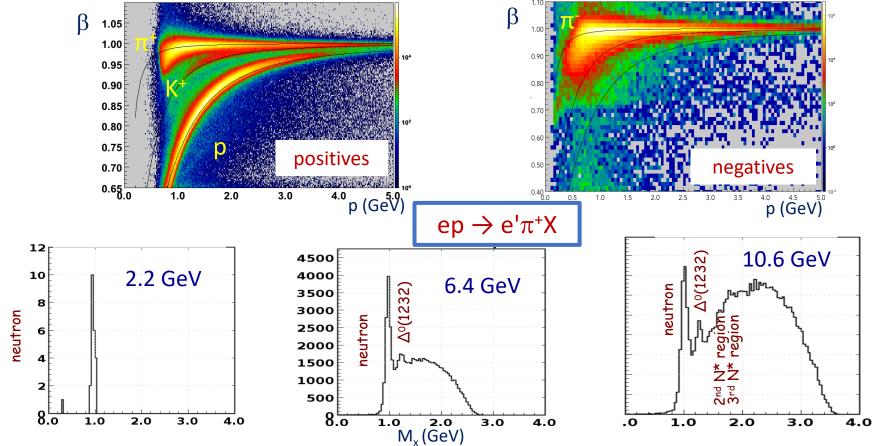
Establishing the N* and Δ Spectrum: πN Scattering


Establishing the N* and Δ Spectrum: π N Amplitudes



Julia-Diaz, Lee, Matsuyama, Sato

Establishing the N* and \triangle Spectrum: $\gamma + p \rightarrow \pi^0 + p$



Kamano Nakamura Lee & Sato, 2012

T single
G E F double
polarization
observables
also available

Event Reconstruction

