The New AMBER Experiment at CERN

By Jochen Schittkowski

Catarina Quintans, LIP-Portugal On behalf of the AMBER Collaboration

> 2nd November 2023 EINN Conference, Pafos, Cyprus

Apparatus for Meson and Baryon Experimental Research

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

A new fixed-target experiment at the M2 beamline of the CERN/SPS north-area

~ 200 physicists from 34 institutes

A QCD Facility: studies of Hadron Physics, from Structure to Spectroscopy

The AMBER timeline

- → Letter of Intent, in 2018
- → Scientific proposal for phase I, in 2019
- → CERN approval in December 2020
- → First physics data taking: 2023

 Scientific proposal for phase II, in preparation

Emergence of Hadron Mass and Structure

Mass Budgets

In QCD, via Dynamic Chiral Symmetry Breaking

Understand how hadrons acquire the observable masses, out of "nothing":

Higgs mechanism contributes only a small part In the proton: 1%

EHM mechanism (i.e. quarks and gluons dynamics) significant contribution

In the proton: ~94%

Also the interference between HB and EHM plays a role

In the kaon: ~80%. In the pion: ~95%

Measurements of meson structure are crucial to confirm it! 4

Spectroscopy

Charge radii

AMBER: a QCD Facility for Hadron Physics related measurements

Polarizabilities

Structure

M2 beamline: beam composition

- Muon beam from hadron decays
- → Clean, thanks to hadron absorber+scrappers
- → Wide range of momenta: 100 to 200 GeV/c
- → Intense beam, up to 50 MHz

- Hadron beams of both charges
- → Wide range of momenta: 50 to 280 GeV/c
- → Moderate to high intensities: 100 kHz to 100 MHz

AMBER spectrometer

- → COMPASS spectrometer as starting point
- Several detectors being upgraded
- New detectors added

UTS

ALPIDE

FVTX detector from PHENIX@RHIC (LANL)

- → Large angles (up to 180 mrad) and momentum coverage
- → Final state PID from RICH
- → Hadron beam PID from CEDARs
- → 2 sets of ECAL+HCAL
- → Triggerless DAQ

Proton charge radius measurement: physics motivation

Hadron radii are an expression of the link between EHM and QCD confinement

Two types of measurements: **lepton-proton scattering** and **hydrogen spectroscopy**, leading to discrepant results

Muon-proton elastic scattering

The proton charge radius can be accessed via the electromagnetic form factors:

$$\frac{d\sigma}{dQ^2} = \frac{\pi\alpha^2}{Q^4 m_p^2 \vec{p}_{\mu}^2} \left[\left(G_E^2 + \tau G_M^2 \right) \frac{4E_{\mu}^2 m_p^2 - Q^2 (s - m_{\mu}^2)}{1 + \tau} - G_M^2 \frac{2m_{\mu}^2 Q^2 - Q^4}{2} \right]$$

New PRad measurements favor low values of r (Nature, 575 (2019) 147)

PRad form factors in clear contradiction with Mainz data

But: ep has large radiative corrections to take into account

Proton charge radius measurement: setup

Muon proton elastic scattering

- → 100 GeV muon beam, 2 x 10⁶ μ /s
- Time Projection Chamber (TPC) filled with hydrogen (up to 20 bar): active target
- Recoil proton measured at TPC, incoming and scattered muons detected in the Unified Tracking Stations (UTS)
- → Small scattering angle (100 µrad): Q²_{min} = 10⁻³ (GeV/c)²

UTS

AMBER goals for the proton radius measurement

Advantage: small radiative corrections

Calculation by N. Kaiser (TUM)

→ Radiative corrections < 1% for Q²<0.04 (GeV/c)²

- Successful test runs in 2021 and 2023, using the IKAR TPC (smaller).
- → Pilot Run in 2024, with the final TPC and UTS
- Physics data taking in 2025
- → Goal: 70 million elastic scattering events
- → Precision on the proton radius ~0.01 fm

Meson charge radii at AMBER

For unstable particles, electron scattering can only be done in inverse kinematics

• Large Q² range : higher sensitivity to the charge distribution $\langle r_{F}^{2} \rangle$

Beam	E _{beam}	Q_{max}^2	Relative charge-radius	
	[GeV]	[GeV ²]	effect on σ(Q²)	
π	280	0,268	~54%	
К	280	0,15	~30%	
K	80	0,021	~5%	
К	50	0,009	~2-3%	
р	280	0,070	~28%	

AMBER phase II

Understanding EHM: π and K structure

From: Chang et al. PRD 102, 054024 (2020)

Pion:

- The lightest of hadrons
- Goldstone boson of QCD
- → Discrepant global fit results

Drell-Yan at AMBER: access to π and K structure

Pion-induced Drell-Yan is the most direct way to access the structure of pions.

π-DY measurements were done by past experiments:
NA3 and NA10 at CERN, E615 at Fermilab.
More recently: COMPASS at CERN

$$u_{val}^{\pi^+} = u^{\pi^+} - \bar{u}^{\pi^+}$$
 and $d_{val}^{\pi^-} = d^{\pi^-} - \bar{d}^{\pi^-}$

and assuming flavour-symmetry, the use of **both beam charges** allows for sea/valence separation:

New COMPASS pion-induced Drell-Yan cross section results

COMPAS

V. Andrieux (COMPASS), SPIN 2023 and ECT* Workshop

Pion-induced Drell-Yan expected statistics

- A conventional hadron beam, but both beam charges
- Time sharing 3:1 (π^+ : π^-) to minimize uncertainty in sea/valence observable
- Beam particle identification using Cherenkov counter detectors

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	π^+ π^-	17.6×10^7 18.6×10^7	4.05 - 8.55	5000 30000
NA3	30 cm H ₂	200	π^+ π^-	2.0×10^{7} 3.0×10^{7}	4.1 - 8.5	40 121
	6 cm Pt	200	π^+ π^-	2.0×10^{7} 3.0×10^{7}	4.2 - 8.5	1767 4961
NA10	120 cm D ₂	286 140	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	7800 3200
	12 cm W	286 194 140	π^-	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^{-}	7.0×10^{7}	4.3 - 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^{7}	4.3 - 8.5 4.0 - 8.5	21700 31000
AMBER		190	π^{-}	6.8×10^{7}	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^{7}	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^{7}	4.3 - 8.5 4.0 - 8.5	24100 32100

From the AMBER proposal

AMBER phase I: Drell-Yan setup

Experimental hall

Gluon content in the pion

Simultaneously with Drell-Yan, also J/ ψ and ψ (2S) production data are collected.

- Large statistics on J/ψ production at dimuon channel
- Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest
- Expected significant feed-down: ψ (2S), χ_{c1} , χ_{c2}
- In the low- p_{T} regime
- Expected to have dominance of $2 \rightarrow 1$ processes
- Use J/ψ polarization to distinguish production mechanisms:

Kaon structure (phases I / II): u_{k}/u_{π}

Kaons allow to access the region of interference between the Higgs mechanism and the EHM mechanism

The only available experimental data:

NA3 \rightarrow 200 GeV K⁻ beam on 6 cm Pt target

> 700 kaon-induced Drell-Yan events

* AMBER (LoI): Assumed an RF-separated beam of 2 x 10^7 kaons/second – not feasible

But the Drell-Yan measurement with conventional beam (1.5% K⁺/h⁺, 2.4% K⁻/h⁻ content, at 190 GeV beams) remains competitive.

Maximize the number of kaon-induced DY events by:

- Some sections of the beamline under vacuum;
- → Reduce the beam divergence;
- Improve CEDARs stability, efficiency and maximum rate capability.

Z-F. Cui, et al. EPJC80(2020)1064, H-W. Lin et al., PRD103(2021)014516

Kaon structure: valence and sea

First-ever kaon sea-valence separation: using both charges kaon beams

$$R_{s/v} = \frac{\sigma^{K+C}}{\sigma^{K-C} - \sigma^{K+C}} \longrightarrow \propto \mathbf{u}_v^K \mathbf{u}_v^p$$

Higher beam momentum: access to lower x_{k}

Simulations to be re-done. If using a conventional beam, it might be more advantageous to go for E_{beam} =190 GeV

- More statistics
- Better sensitivity at lower x_{κ}

×

0.9E 0.8

0.7Ē

0.6

0.5 0.4

0.2

0.1

-3

Kaon structure: gluon contribution

Direct photon production measurement (phase II)

Measurement possible using a K⁺ beam on a long liquid H₂ target

background

K⁺ beam: minimize bkg

21

do∕σ 윤¹⁸⁰ 년 160 p_> 2.5 GeV/c K^+ ${\bf q} \; {\bf g} \rightarrow {\bf q} \; \gamma$ for K⁺, K 140 0.8 E706 MC-based π^0 background **NA24** NA₃ 120 AMBER subtraction 100 $q\overline{q} \rightarrow g ~\gamma$ for K 80 -0.4 60 40 0.2 \rightarrow g γ for K 20 0 0, 2 -2 -1 50 100 150 250 300 з 200 2.5 3.5 4.5 5 p, GeV/c EBEAM, GeV x_⊤ = 2p_⊤/√s

Antiproton production cross section (phase I)

Dark Matter searches in Astroparticle Physics: Search for excess in antiparticle fluxes

We need good accuracy in the predicted/measured natural fluxes

Fraction of \overline{p} from cosmic ray interactions with the interstellar medium:

very important to measure p-He and He-p reactions

T [GeV]

Antiproton cross section at AMBER

CEDAR beam identification 0.7 protons #hits ≥ 4 0.6 • #hits ≥ 6 Normalised rate 0.5 #hits = 8 0.4 π^+/K^+ 0.3 0.2 0.136.5 34.5 35 35.5 36 37 p/T (mbar/K)

- Identify the proton beam particle using CEDAR
- → Identify produced antiprotons using RICH
- → A scan in beam momentum

AMBER 2023: \overline{p} production cross section from p+He

Parameter space to cover, for different proton beam energies (shades of blue) for 3% uncertainty in the cross section of $p + He \rightarrow \overline{p} + X$

- Measurement of p+He collisions at AMBER done in May/June 2023, varying the proton beam energy in the range 60 – 250 GeV.
- Projected statistical error of the measurement is < 1% over most of the phase space covered.

Particle identification at RICH ²⁴

Kaon polarizabilities (phase II)

Electric and magnetic polarizabilities: in response to an external electromagnetic field. Strength of the effect predicted by Chiral Perturbation Theory: $\alpha_{\kappa} = (0.64 \pm 0.10) \times 10^{-4} \text{ fm}^3$ while quark confinement model predicts: $\alpha_{\kappa} = 2.3 \times 10^{-4} \text{ fm}^3$

Hadron spectroscopy: strange sector (phase II)

Many states predicted but not yet observed.

Measurements of high energy Kaon beam diffractive scattering

AMBER goals:

- → At least 10x the COMPASS samples
- → Final-state particles PID with full momentum coverage
- → Large, uniform acceptance

Summary:

The AMBER experiment at the M2 beamline of CERN/SPS started data taking in 2023

The physics motivation is a better understanding of the Emergence of Hadron Mass and the observable effects that steam from it:

- Hadron radii
- Hadron structure
- Meson polarizabilities
- Strange sector hadron spectroscopy

First measurement was the antiproton production cross section in p+He collisions, important to interpret antiparticle fluxes in context of Dark Matter searches.

Pion and kaon induced Drell-Yan measurements, and a proton radius measurement itay tuned. from muon-proton elastic scattering will follow.

A new proposal, for a 2nd phase of measurements is in preparation.