

Achim Denig November 1st, 2023

Precision Experiments at the MESA Accelerator

15th European Research Conference on Electromagnetic Interactions with Nucleons and Nuclei Paphos, Cyprus

[G U

3

The Mainz Microtron MAMI

Electron Accelerator E = 0.185 GeV - 1.6 GeV (CW) operated at JGU Mainz **Hallmarks**

- Intensity max. 100 μA
- Resolution $\sigma_{\rm F} < 0.100 \, {\rm MeV}$
- Polarization 85%
- Reliability: up to 7000 h / year

[G]U

New experimental hall

Cluster of Excellence PR^îSMA⁺

Precision Physics, Fundamental Interactions and Structure of Matter

New MESA accelerator: Beam energies below MAMI energy range ! Increase of intensities by factor of 10!

Mainz Energy-Recovering Superconducting Accelerator (MESA)

P2 Experiment MESA Extracted Beam Mode

Measurement of: $\sin^2 \Theta_W = (e/g)^2 = 1 - (M_W/M_Z)^2$

Rad. corrections strongly correlated with quarks, W-Bosons, Higgs, ...

Leads to running (Q² dependence) of $sin^2\Theta_W \rightarrow Precision$ test of SM

Scattering of longitudinally polarized electrons on unpolarized protons

→ Z boson exchange in electron-proton scattering introduces parity-violating effect
→ Measure parity-violating Left-Right cross section asymmetry A_{LR}

7

Measurement of the Weak Charge of the Proton

Scattering of longitudinally polarized electrons on unpolarized protons

→ Z boson exchange in electron-proton scattering introduces parity-violating effect
→ Measure parity-violating Left-Right cross section asymmetry A_{LR}

Scattering of longitudinally polarized electrons on unpolarized protons

→ Z boson exchange in electron-proton scattering introduces parity-violating effect
→ Measure parity-violating Left-Right cross section asymmetry A_{LR}

JGU

IG U

P2 Experiment

GU

P2 - Parity violation experiments \rightarrow 3.10²² EOT (!)

- Superconducting solenoid
- Integrating Cherenkov detector ring
- Tracking detectors (HV-MAPS)
- Chain of polarimeters (90% polarization)
- LH₂ target (60cm) and solid state targets (¹²Ca, ²⁰⁸Pb)

Achim Denig

	E _{beam}	$155\mathrm{MeV}$
	θ_{f}	35 °
	$\delta heta_{f}$	20 ⁰
	s_W^2	0.23116
	$\Delta_{exp} s_W^2$	$3.7 \cdot 10^{-4} (0.16\%)$
	$\Delta_{exp,stat} s_W^2$	$3.1 \cdot 10^{-4} (0.13\%)$
	$\Delta_{exp,P} s_W^2$	$0.7 \cdot 10^{-4} (0.03\%)$
	$\Delta_{exp, false} s_W^2$	$0.6 \cdot 10^{-4} (0.03\%)$
	$\Delta_{exp,t.w.}s_W^2$	$1.2 \cdot 10^{-4} (0.05\%)$
	$\Delta_{exp,t.p.} s_W^2$	$0.1 \cdot 10^{-4} (0.00\%)$
	$\Delta_{exp, \Box_{\gamma Z}} s_W^2$	$0.4 \cdot 10^{-4} (0.02\%)$
	$\Delta_{exp,nucl.FF} s_W^2$	$1.2 \cdot 10^{-4} (0.05\%)$
>	×10 ⁻³	
∆sigSv		
7		کہ ر
	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	Total

Physics Program of P2 Experiment

Hydrogen

Measurement of parity-violating A_{LR} and extraction of proton weak charge \rightarrow Improvement QWEAK x 3

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} \propto (1 - 4\sin^2\theta_W)$$

¹²C

Measurement of parity-violating A_{LR} and extraction of ¹²C weak charge \rightarrow First precision measurement

$$A_{LR} \propto -24 \cdot \sin^2 \theta_W$$

 $\propto \frac{F_{\text{weak}}(Q^2)}{2}$

complementary to hydrogen measurement in BSM reach

Pb

Measurement of parity-violating A_{LR} and **extraction of weak form factor**

 A_{LR}

- sensitive to neutron skin thickness
- related to the Equation of State (EOS)
- relation to neutron star density
- \rightarrow Improvement upon PREX x 2

DarkMESA Experiment Parasitically running to P2 MESA Extracted Beam Mode

Light Dark Matter (LDM)

Light Dark Matter MeV < m_{DM} < ~ GeV

- Thermal relic targets exist for the MeV-GeV mass scale
- LDM requires a beyond SM force
- Rich phenomenology of portals: vector, higgs, neutrino, axion

WIMPs

 $GeV < m_{DM} < ~TeV$

- Matching relic abundance for the electroweak mass scale
- WIMPs require only SM interaction
- No positive evidence after LHC and galactic DM searches

Vector Mediator: Dark Photon

<u>Model 1</u>: $m_{\gamma'} \ll 2m_{DM}$

```
Dark Photon decaying into SM particles – coupling \epsilon \rightarrow MAGIX visible decay
```

 $\frac{1}{2}\epsilon_Y F^Y_{\mu\nu}F'^{\mu\nu}$

Holdom [1986]

<u>Model 2</u>: $m_{\gamma'} > 2m_{DM}$

Electron Scattering of 3x10²² EOT (MESA) on Beam Dump → Collimated pair of Dark Matter particles !

JGU

Full GEANT4 simulation:

P2 target, beam dump, DarkMESA detector volume, walls etc.

Baseline Concept: Inorganic crystal calorimeter

- Cherenkov (fast, no neutrons)
- Scintillator (higher light yield)

\rightarrow LDM interaction with

DarkMESA material (electron recoil)

19

Run plan for DarkMESA

Phase	Detector	Period	Time	EOT
А	Prototype	14. year	2,200 h	$7.42 \cdot 10^{21}$
В	PbF ₂ , SF5	46. year	6,600 h	$2.22 \cdot 10^{22}$
С	+TPC	712. year	13,200 h	$4.45 \cdot 10^{22}$

MAGIX Experiment Energy-Recovering Mode (ERL) of MESA

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target

 \rightarrow a novel technique in nuclear and particle physics

Supersonic crygenic gas jet target

- Windowless environment
- Commissioned at A1/MAMI
- Design density 10¹⁹/cm²

Two identical spectrometers

- Two dipoles each
- One quadrupole each

TPC-based focal plane detector

- 10⁻⁴ momentum resolution
- Requires spatial resolution of O(100 μm)
- Open field cage
- GEM readout

High-Resolution MAGIX Spectrometers

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target

ightarrow a novel technique in nuclear and particle physics

NIM A1013 (2021

Supersonic crygenic gas jet target

- Windowless environment
- Commissioned at A1/MAMI
- Design density 10¹⁹/cm²

TPC-based focal plane detector

- 10⁻⁴ momentum resolution
- Requires spatial resolution of O(100 μm)
- Open field cage
- GEM readout

GU

ometers

ble each

ach

•

Dark Photon Search at MAGIX

Precision experiments at MESA

APEX

Achim Denig

Discrepancy between proton radius extractions from

muonic hydrogen spectroscopy and electron scattering/electronic hydrogen spectroscopy (Situation 2016)

The Proton Radius (Puzzle ?)

 $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{\varepsilon \left(1 + \tau\right)}$

 $+ \tau G_M^2 \left(Q^2 \right) \right]$

IGU

 $\left[\epsilon G_{E}^{2} \left(Q^{2} \right) \right]$

28

MAGIX provides ideal environment for precision Few Body Physics

→ Elastic scattering: improved determination of charge radii (d, ³He, ⁴He) from e⁻ scattering
→ Inelastic processes as input for reduced model uncertainties of two-photon corrections and test of χEFT theory

Example:

⁴He monopole TFF recently measured at A1/MAMI: Q^2 dependence of $e^{-4}He(0^+) \rightarrow e^{-4}He^{*}(0^+)$

¹²C (α , γ) ¹⁶O reaction

- Of fundamental importance for star burning
- Determines ¹²C / ¹⁶O abundance
- Influences the nucleosynthesis of heavy elements

unknown nuclear physics -> needs to be known at Gamow Peak ~0.3 MeV sion experiments at MESA

¹⁶ $O(\gamma, \alpha)^{12}C$ Reaction at MAGIX

31

Conclusions

- New MESA electron accelerator (increase in intensity x 10 wrt. MAMI) currently being constructed at Mainz
- Energy-Recovery Linac mode: innovative and "green" technique!
- 3 experiments under construction:
 - \rightarrow Parity-violation experiment P2
 - → Versatile MAGIX spectrometer
 - → Beam dump experiment DarkMESA

P2 – Parity Violation Experiments

- prec. meas. of sin²θ_W / search for physics beyond the SM
- axial FF + strange contribution to magnetic FF
- neutron skin thickness of lead

 quest for dark matter and other exotic particles

MAGIX – Versatile Electron Scattering Experiment

- Structure of Nucleons and Nuclei
- Few-Body Systems
- Nuclear Astrophysics
- Dark Sector Searches
- → High intensity and low energy enabling exciting precision experiments in the areas of nuclear, hadron and particle physics