Partonic Structures from Lattice Life After NLO

November 2023, EINN, Paphos, Cyprus

Swagato Mukherjee

partonic structure from lattice QCD ... what's NLO & all that ?!

lightcone

- 'partonic structure':
- effective description of QCD as observed from an infinite-momentum frame / on the
- $P_{z} \rightarrow \infty / z^{2} \rightarrow 0$ first, regularize QFT

renormalize

fast-moving hadron

 $P_z \approx E$

In first regularize QCD on a lattice, then $P_{_7} \to \infty$ / $z^2 \to 0$

opposite order of limits for 'seeing partonic structure'; two limits don't commute

difference is UV physics, can be taken care of through pQCD matching

+
$$\mathscr{O}\left[\frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2}, \frac{\Lambda_{\text{QCD}}}{(1-x)P_z}, \frac{M_H^2}{P_z^2}, \cdots\right]$$

- ET - 1 + $\mathcal{O}\left[z^2 \Lambda_{\text{QCD}}^2, z^2 M_H^2, \dots\right]$

$C(\alpha, z^2, \mu) \otimes$

position space

partonic structure from lattice QCD ... what's NLO & all that ?!

NLO LO $C(\mathcal{S},\mu) \sim \alpha_s^0(\mu) + \alpha_s(\mu) f\left(\ln[\mathcal{S}\mu]\right) + \alpha_s^2(\mu) f\left(\ln[\mathcal{S}\mu]\right) + \cdots$

NNLO

 $\mathcal{S} = 2xP_z, z^2$

operator product expansion (OPE) & Mellin moments

expansion of position space bilocal matrix elements in z^2 around $z^2 = 0$

Wilson coefficients $C_n(z^2, \mu) \times \langle x^n \rangle$ of n^{th} Mellin moments

NLO

 $C_n(z^2,\mu)$: expansion of $C(\alpha,z^2,\mu)$

$C_n(z^2,\mu) \sim \alpha_s^0(\mu) + \alpha_s(\mu) f(\ln[z^2\mu]) + \alpha_s^2(\mu) f(\ln[z^2\mu]) + \cdots$ NNLO

pion valance PDF

NNLO momentum matching valance pion mass 300 MeV lattice spacing 0.04 fm pion momenta up to 2.4 GeV first LQCD PDF at NNLO

Yong Zhao et al., Phys. Rev. Lett. 128 (2022) 14, 142003

pion valance PDF

2nd, 4th, 6th Mellin moments **OPE: NNLO Wilson coeff** physical pion mass

continuum extrapolated

Xiang Gao et al., Phys.Rev.D 106 (2022) 11, 114510

DNN: NNLO position matching

physical pion mass

continuum extrapolated

Xiang Gao et al., Phys.Rev.D 106 (2022) 11, 114510

proton unpolarized isovector PDF

NNLO momentum matching physical pion mass lattice spacing 0.075 fm proton momenta ≤ 1.53 GeV

Andrew Hanlon et al., Phys. Rev. D 107 (2023) 7, 074509

proton unpolarized isovector PDF

1st – 4th Mellin moments

OPE: NNLO Wilson coeff

NLO to NNLO: no significant effect within present precision Andrew Hanlon et al., Phys. Rev. D 107 (2023) 7, 074509

dotted lines: NNPDF4.0

proton unpolarized isovector PDF

DNN: NNLO position matching

 $q^{u-d}(x)$

Andrew Hanlon et al., Phys. Rev. D 107 (2023) 7, 074509

proton GPD: Mellin moments of H and E at zero skewness

 A_{n0} : nth Mellin moment of H **OPE: NNLO Wilson coeff** pion mass 260 MeV lattice spacing 0.093 fm proton momenta \leq 1.67 GeV

Talk: Martha Constantinou

proton GPD: Mellin moments of H and E at zero skewness

B_{n0} : nth Mellin moment of E **OPE: NNLO Wilson coeff** NLO to NNLO: no significant effect within present precision

Xiang Gao et al., Phys.Rev.D 108 (2023) 1, 014507

quarks' angular momenta contributions to proton spin

Xiang Gao et al., Phys.Rev.D 108 (2023) 1, 014507

Ji sum rule:
$$J^q = \frac{1}{2} \left[A_{20}^q(0) + B_{20}^q(0) \right]$$

$$J^{u+d} = 0.296(22)(33)$$

$$J^{u-d} = 0.281(21)(11)$$

Science highlight of US DOE Office of Science, Office of Nuclear Physics

up quarks ~ 50%

 $\mu = 2 \text{ GeV}$

quarks' angular momenta contributions to proton spin

down quarks ~ 8%

pion valance GPD: Mellin moments of H at zero skewness

OPE: NNLO Wilson coeff

2nd moment

Qi Shi et al., in preparation

4th moment

leading renormalon resummation (LRR)

leading renormalon resummation (LRR)

non-perturbative (renormalon) ambiguity from assymptotic series in α_{c}

leading renormalon resummation (LRR)

choose renormalization and matching schemes consistently:

removes twist-3 power corrections from light-cone distributions

pion valance GPD: H at zero skewness

4.03.5NNLO+LRR momentum 3.0matching 2.52.0valance pion mass 300 MeV 1.5lattice spacing 0.04 fm 1.00.5 pion momenta up to1.94 GeV 0.0

Qi Shi et al., in preparati

0	n

 $C(\mathcal{S},\mu) \sim \alpha_s^0(\mu) + \alpha_s(\mu)f(\ln[\mathcal{S}\mu]) + \alpha_s^2(\mu)f(\ln[\mathcal{S}\mu]) + \cdots$

remove large logs by choosing: $\mu' = k/S$

N

 $\mathcal{S} = 2xP_{7}, z^{2}$

vary k within reasonable range to asses systematic uncertainties

C and $\alpha_{\rm c}$ is determined at scale μ'

evolve C from scale μ' to PDF scale μ

renormalization group resummation (RGR)

depending on the (consistent) order of expansion in α_{s} used for C, β , γ one resums certain powers of the logs in C

next example: resume next-to-leading-log (NLL), i.e RGR=NLL

$\alpha_s(\mu')$ becomes too large for small μ' ; large z^2 and small $2xP_{\tau}$

breakdown of pQCD matching

estimate trustworthy x-region for a give P_{τ}

proton transversity PDF

NLO+LRR+NLL(RGR) momentum matching

lattice spacing 0.075 fm, proton momenta 1.53 GeV, physical pions

Andrew Hanlon et al., arXiv:2310.19047

proton transversity PDF

Andrew Hanlon et al., arXiv:2310.19047

NLO+LRR+NLL(RGR) momentum matching

resummation of threshold logs

pion valance PDF

first LQCD calculations of PDF including threshold resummation

Yong Zhao et al., Phys.Rev.D 103 (2021) 9, 094504

pion distribution amplitude Talk: Rui Zhang

first LQCD calculations of x-dependent partonic structure with chiral fermions

sorry, no time left to discuss

in just two years amazing process in LQCD towards the precision era of EIC ...

... exciting road ahead

NNLO+LRR: $t = 0 \text{ GeV}^2$ -0.231 GeV²

O+LRR

387 GeV2 $095~{
m GeV}^2$ $690~{
m GeV}^2$

 $= 2 \text{ GeV}, p_z = 1.937 \text{ GeV}$

JAM3D-2022

Radici, Bacchetta '18

x-space (NLO+LRR)

-space (NLO+LRR+RGR)

r-space (LO)

